Static vs. Dynamic Populations in Genetic Algorithms for
Coloring a Dynamic Graph

Cara Monical*
Centre College
600 W Walnut St
Danville, KY 40422
cmonica2@illinois.edu

ABSTRACT

We studied the performance of genetic algorithms for col-
oring dynamic graphs under a variety of experimental con-
ditions, focusing on the relationship between the dynamics
of the graph and that of the algorithm. Graph coloring is a
well-studied NP-hard problem, while dynamic graphs are a
natural way to model a diverse range of dynamic systems.
Dynamic graph coloring can be applied to online scheduling
in a changing environment, such as the online scheduling of
conflicting tasks. As genetic algorithms (GAs) have been
effective for graph coloring and are adaptable to dynamic
environments, they are a promising choice for this problem.
Thus, we compared the performance of three algorithms: a
GA that maintained a single population adapting to the dy-
namic graph (DGA), a GA that restarted with a fresh pop-
ulation for the static graph of each time-step (SGA), and
DSATUR, a well-known heuristic graph coloring algorithm
re-applied at each time-step. We examined the relative per-
formance of these algorithms for dynamic graphs of different
sizes, edge densities, structures, and change rates, using dif-
ferent amounts of evolution between time-steps. Overall, the
DGA consistently outperformed the SGA, being particularly
dominant at low change rates, and under certain conditions
was able to outperform DSATUR.

Categories and Subject Descriptors
1.28 [Artificial Intelligence]: Problem Solving, Control

Methods, and Search; G.2.2 [Discrete Mathematics]: Graph

Theory—graph algorithms

General Terms
Algorithms

Keywords

genetic algorithms, combinatorial optimization, dynamical
optimization, dynamic graph, graph coloring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’14, July 12-16, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598233.

469

Forrest Stonedahl?
Centre College
600 W Walnut St
Danville, KY 40422
forrest.stonedahl@centre.edu

1. INTRODUCTION AND RELATED WORK

The graph coloring problem is the well-known problem of
assigning as few colors as possible to the vertices of a graph
such that no two adjacent vertices are given the same color
and is commonly used for scheduling applications [15, 13,
5]. Many real-world problems, however, are better modeled
by a dynamic graph that can reflect a changing environment
[8]. In the case of scheduling applications, this would allow
for the online assignment of resources when only the current
tasks are known, such as registers for the currently known
values in program execution, frequencies for the currently
connected devices in a mobile ad-hoc network, or batches
for the currently tasked jobs in a job management system.

In the static model, a graph G has a set of vertices, V,
and a set of edges, £. A dynamic graph adds the dimension
of time, and so a dynamic graph varies either V (vertez-
dynamic or node-dynamic) or E (edge-dynamic) or both [8].
We consider a discrete dynamic graph that is a succession
of (related) static graphs; a time step is the time between
the changes of the dynamic graph and G}, denotes the static
graph at time k. The simplest extension of the static graph
coloring problem to the dynamic graph coloring problem is
to find a minimal coloring of the vertices of G at each time
step. Because the static graph coloring decision problem is
NP-complete [7] and the optimization problem is NP-hard,
the dynamic graph coloring problem must be NP-hard also.
In this work, we only consider vertex-dynamic graphs where
edges are added and removed only when one of their end-
points is added or removed.

Two considerations for dynamic graph coloring problems
are (1) whether the complete evolution (an offline problem)
or only the current state (an online problem) of the dynamic
graph is known during execution, and (2) whether vertices
are allowed to change color as the graph changes. If a ver-
tex color is fixed for the lifetime of the vertex, the offline
dynamic graph coloring problem reduces to the static graph
coloring problem on the graph constructed by taking the
union of V and E over all time steps. Thus, this case is
relatively uninteresting. While Lovédsz et al. [12] consider
an online graph coloring problem where vertices’ colors are
fixed after assignment, we will consider a relaxed variant of
the online dynamic graph coloring problem that allows color
re-assignment at each time step.

The goal for our dynamic graph coloring problem is to
minimize the cumulative (or equivalently, average) number

'Now at: University of Illinois Urbana-Champaign, Math
Department, 1409 W. Green Street, Urbana, IL 61801
2 Affiliated with Augustana College as of August 2014

of colors used to (properly) color the graph over time. Even
if the color of a vertex can change between time steps, the
coloring at time ¢ is still a natural starting point for the
coloring at time t+1. Therefore, we could also consider color
turnover, or how many vertices change colors between time
steps. Minimizing the number of colors and minimizing the
amount of color turnover are potentially competing goals (as
preventing the recoloring of a vertex could prevent finding
an optimal coloring).

There may be practical situations where the cost of re-
coloring a vertex is greater than the cost of a slightly sub-
optimal coloring (such as in register allocation where values
would need to be moved); however, in this work, we allow
vertices to change colors freely and do not consider color
turnover. In contrast, an ant-colony-inspired approach is
given in [14], where vertices are only recolored when a con-
flict is created or when the degree saturation (the number
of colors in the neighbors of a vertex) can be lowered. This
approach will tend to have a lower rate of color turnover.

Genetic algorithms (GAs) [10] have frequently been used
on the static graph coloring problem with reasonable success
[3]. Additionally, in dealing with a dynamic environment,
GAs are a natural choice because they mimic natural evo-
lution, which occurs in a changing environment. However,
one challenge with adapting GAs to dynamic problems is up-
dating individuals in the population so they correspond to
valid solutions of the changed problem [11]. While the most
success in static graph coloring using genetic algorithms has
occurred by hybridizing partition-based genetic algorithms
with local search [6, 5], these algorithms present several chal-
lenges in adapting to dynamic graph coloring.

These algorithms commonly start by trying to find a ko-
coloring and when that is successful, search for a ko —1 color-
ing and so on, until they find a suitable solution or reach the
limits of available computational resources. This approach
is not well-suited to a highly dynamic system where the goal
is to find an optimal proper coloring at each time step and
there may be a limited amount of evolution between changes
in the graph. Furthermore, with edge-dynamic graphs, a
change in the graph could break the independent sets of
the individuals in the population, requiring costly rearrange-
ment to restore individuals corresponding to a valid coloring.
The genetic algorithm would need to actively detect changes
in the graph (rather than just adapting to them) in order to
update the population accordingly. Finally, even with just
vertex-dynamic graphs, a small change in the graph could
cause significant shifts in the vertices that should be colored
the same color as new vertices will create new interactions
between existing vertices.

The two other main classes of GAs for graph coloring are
integer-based algorithms that encode and evolve colorings
of the graphs directly and permutation-based algorithms
that encode and evolve permutations of the graph’s vertices
(genotype), which are then decoded into colorings (pheno-
type) using the standard greedy coloring algorithm [9]. In
integer-based algorithms the colorings are evolved directly
and so a small change in the graph could require signifi-
cant changes in the individuals to restore a proper coloring.
However, with permutation-based algorithms, the changes
to the graph are much more easily transferred to the indi-
viduals: vertices that have been removed from or added to
the graph merely need to be removed from or added to the
ordering encoded by each individual. Additionally, as the

470

graph changes, it is likely that high fitness individuals will
retain their high fitness—key vertices for early coloring in
the graph at time ¢ are likely still key in the changed graph
at ¢t + 1, despite (possibly large) changes in the phenotypic
coloring. Furthermore, permutation-based GAs do not re-
quire an active awareness of the algorithm to changes in the
graph as the decoder will detect changes in the graph when
using an individual to produce a coloring. Thus, we have
focused exclusively on permutation-based GAs.

There are two genres of problems, traveling salesman-like
problems and scheduling-like problems, that are typically
tackled with permutation-based GAs, each with its own set
of effective crossover and mutation operators [17]. In the
former genre, preserving adjacency within an individual is
important, while in the latter, preserving relative order of
the vertices is key. Graph coloring clearly falls in the second
class of problems, as it is frequently used for scheduling.

To our knowledge, we are the first to employ GAs for the
dynamic graph coloring problem. As such, we focus on ex-
ploring the parameters of both the problem (Section 2.1) and
the algorithm (Section 2.2) that affect the performance of a
permutation-based GA. In Section 3, we discuss the effects
on these parameters, including the edge density and graph
structure of the graph (3.1), the rate at which the graph
is changing (3.2), and the amount of evolution that can be
done during each graph time step (3.3). While many varia-
tions to GAs, such as hybridizing with local search, seeding
the initial population, or adapting the algorithm alongside
the evolving solutions, have been shown to improve perfor-
mance on graph coloring [2, 3], we seek to illuminate the rela-
tionship between the dynamic graph-coloring problem and
GA performance, rather than determine the best possible
algorithm. Consequently, we do not consider these improve-
ments (or others), though we would recommend exploring
these methods for real-world applications. Specifically, we
focus on the relationship between the change rate of the
graph, the amount of evolution done at each step, and the
GAs’ performance, as this relationship provides insight into
the interaction between the two sources of dynamism: the
dynamics of the problem and the dynamics of the algorithm.

2. METHODS

2.1 Graphs

We test our GAs on two different dynamic graph models.
The first is a dynamic extension of G(n, p) graphs developed
by Erdés and Rényi [4]. In the static model, a G(n, p) graph
is a graph on n vertices where each edge appears with prob-
ability p. We define an extension of this model, G(n,p, c,)
graphs, where ¢, is the vertex change rate. To create a dy-
namic G(n,p,c,) graph, we start with a G(n,p) graph for
G1, and at each successive time step, vertices in the graph
Gy “die” (are removed in G¢41) with probability ¢,. To keep
G at approximately n vertices, an expected nc, vertices are
added at each step. When a new vertex v is added, edges are
added between v and each vertex already in the graph with
probability p. Edges are only removed or added when their
incident vertices are removed and added. Thus at any time
t, Gt is a G(n + €, p) graph, € has high probability of being
small, and an average of nc, vertices change each step.

Our other dynamic graph model is a dynamic 2-D Eu-
clidean graph. In a 2-D Euclidean graph, each vertex is as-
signed a random x and y coordinate in the unit square. Two

vertices are adjacent if the Euclidean distance between them
is less than some « threshold. For the dynamic Euclidean
graph model, we mirrored the G(n,p,c,) model, where n
and ¢, act as above. The parameter p is used to calculate «
such that two random points in the unit square have a prob-
ability p being a distance of « apart and thus will result in
a graph with an edge density p. As we only examine vertex-
dynamic graphs, vertices do not move between time steps (as
this would change edges) but are deleted and added at new
random (z,y) locations at a rate controlled by ¢,. For both
graph models, we varied n, p, and ¢, in order to investigate
how these parameters affected the GA performance.

2.2 Algorithms

Throughout our tests, we compared the performance of
three algorithms:

e DSATUR [1], the standard graph coloring heuristic al-
gorithm that colors vertices in order of degree satura-
tion (used as a baseline for performance)

e DGA, a genetic algorithm with a dynamic population
(single population evolves as the graph changes)

e SGA, a genetic algorithm with a static population (new
random population is generated each time step).

The only difference between the DGA and SGA was how
the population was handled as the graph changed. For both,
we used an steady-state genetic algorithm [18] with elitism
where the two children produced by crossover and mutation
replace the two individuals with the worst fitness, regardless
of the fitness of the new children.

Fitness was calculated by using the standard greedy col-
oring on the permutation specified by the individual. Using
just the number of colors in the decoding offers little grada-
tion in the fitness landscape as many individuals decode with
the same number of colors. To break ties between these in-
dividuals, we examined the number of vertices assigned each
of the three least used colors; an individual with only a few
vertices of a color seemed closer to using fewer colors than
one with a even distribution of vertices among the colors.
Thus, we calculated fitness as f = n3c + nc1 + nes + cs,
where c is the number of colors used, c¢; is the number of ver-
tices colored the least used color, cz is the number colored
the second least used color, and cs is the number colored
the third least used color. As we wanted to minimize the
number of colors used, our GAs sought to minimize fitness.

Six standard crossover operators for permutation-based
GAs are described in [17]. These are edge, order 1 (OX1),
order 2 (OX2), position, partially mapped (PMX), and cy-
cle crossover. As edge crossover preserves adjacency, which
is not important for graph coloring, we did not implement
it. We did implement the other five and in preliminary ex-
periments, saw no significant difference in the performance
of the GAs with different crossover operators. As such, we
used OX1 in our main experiments as it performed reason-
ably well and is a standard crossover operator.

Similarly we considered three mutation operators (RAR,
SWAP, inversion) described in [9]. We found that RAR and
SWAP performed noticeably better than inversion and hav-
ing no mutation, but observed no significant difference be-
tween RAR and SWAP. We chose to use the SWAP operator.
Our other constant parameters were chosen with reasonable

471

default values based on the authors’ previous experience;
fine-tuning is unlikely to alter the main qualitative results:

Population size: 100

Tournament selection with tournament size: 3
Crossover rate: 0.7

Mutation chance per individual: 0.5.

For the initial dynamic population and the static popu-
lation at each step, we simply generated 100 random per-
mutations on the vertices in the current graph. To repair
each individual in the dynamic population each time the
graph changed, we removed all vertices that had been re-
moved from the graph, and then independently added the
new vertices at random positions in each individual.

The graph parameters (n, p, ¢y) and number of individuals
created (and fitness evaluations done) e, are all parameters
determined by the nature of the problem being solved and
computational resources available. Thus, in order to study
the difference between the DGA and SGA for a wide variety
of problems, we performed a univariate sensitivity analysis,
in turn varying each of n, p, ¢y, and e from the following
default parameter values:

Graph size, n: 100

Edge density, p: 0.6

Change rate, ¢,: .01

Individuals evolved per step, e: 1000.

2.3 Experiment

In our experiments, each run consisted of generating a
random graph and a random initial dynamic population,
and then letting the graph change 150 steps. For each step:

Add a vertex with probability c¢,. Repeat n times.
Add new vertices to the DGA’s population.

Run DSATUR on the current graph.

Evolve the DGA’s population for e individuals.
Create the SGA’s population and evolve e individuals.
Record the number of colors used by DSATUR and
the best individual from the DGA and SGA.

7. Remove each vertex with probability c,.

8. Remove “dead” vertices from the DGA’s population.

A

Each test consisted of working with a single dynamic graph
for 150 steps—running all three algorithms on the same
graph so that we could compare their performance. For
each set of parameters, we performed 200 replicate runs and
took the mean of the cumulative number of colors used by
each of the algorithms for the entire run of the graph.

3. RESULTS AND DISCUSSION

As the only difference between the DGA and the SGA
is how the population is maintained, the two genetic algo-
rithms do the same amount of work when the parameters
are kept constant. DSATUR, relatively speaking, requires
very little computational effort. However, our experiments
show that the genetic algorithms can outperform DSATUR
for certain values of n, p, ¢,, and e. Furthermore, as seen
in [16], there are 3-chromatic graphs on O(n) vertices where
DSATUR will use n colors, while GAs can theoretically find
an optimal solution. Finally, the SGA does not outperform
the DGA, though there are some parameter ranges where
the two have indistinguishable performance.

Performance vs. Edge Density on G(n,p,c,) Graphs

11

1050

95

Percentage of Mean DSATUR Colors Used

— DSATUR
@-@® DGA
V-V SGA

02

985 04 0.6

. 1.0
Edge Density (p)

110 Performance vs. Edge Density on Euclidean Graphs

105

95

— DSATUR
@®-@® DGA
V-V SGA

08

Percentage of Mean DSATUR Colors Used

8o 0.4 0.6
Edge Density (p)

0.2 1.0

Figure 1: Performance of the genetic algorithms relative to DSATUR for varying edge densities, p, in G(n,p, ¢,)
(left) and Euclidean (right) graphs. We can see that the DGA always outperformed SGA, and sometimes
outperformed DSATUR, depending on edge density and graph structure.

In the figures that follow, we give performance values as
a percentage of the mean number of colors DSATUR used
so we can easily compare relative performance of the algo-
rithms. Better performance occurs when the GAs use fewer
colors relative to DSATUR. The error bars represent 95%
confidence intervals estimated from the 200 replicate runs
at each parameter setting and are scaled by the DSATUR
mean. Despite the same number of replicate runs, the con-
fidence intervals are much wider for the Euclidean graphs
than for the G(n, p, ¢,) graphs, suggesting Euclidean graphs
have a wider range of chromatic number than G(n,p,cy)
graphs with the same parameters.

3.1 Edge Density (p)

As shown in Figure 1, the relative performance of the GAs
to DSATUR depends strongly on p for G(n,p,c,) graphs.
For G(n,p,cy) graphs with edge densities between .1 and
.95, the relative genetic algorithm performance increases as
edge density increases. Additionally, on G(n,p,c,) graphs,
the DGA performance relative to SGA does not seem to
depend on p, as there is a fairly consistent gap between their
performance levels for almost all values of p.

For Euclidean graphs, the relative performance of the ge-
netic algorithms to DSATUR is much less dependent on p.
The DGA tends to slightly outperform DSATUR, while the
SGA lags behind DSATUR. Higher edge densities in Eu-
clidean graphs are likely to form cliques or near-cliques,
which are colored effectively by prioritizing by degree satu-
ration, and so DSATUR is able to do just as well as the GAs.
However, in G(n, p, ¢,) graphs, the additional edges are more
spread out through the entire graph, making graphs with
higher edge densities harder to color. This provides the ge-
netic algorithms more potential to improve on the DSATUR
coloring, leading to a smaller percentage of colors used.

3.2 Change Rate (c,) & Evolution Per Step (¢)

The change rate of the graph, ¢,, and the amount of evo-
lution done per step, e, present an interesting relationship
between the dynamic nature of the problem and the dy-

472

namic nature of the algorithm. As shown in Figure 2, more
evolution leads to better performance of the GAs relative
to DSATUR, especially on G(n,p,c,) graphs. This is not
surprising since more evolution means more work is being
done. However, on Euclidean graphs, more evolution (be-
yond e =~ 1500) does not substantially help the GAs improve
its performance relative to DSATUR. Again, this suggests
that DSATUR is able to get close to the optimal coloring
on Euclidean graphs, whereas on the G(n,p, ¢,) DSATUR’s
coloring may be further from optimal, and more evolution
allows the GAs to improve more compared against it.

In Figure 3, we observe that under constant evolution, the
SGA and DSATUR performance differ by a constant per-
centage regardless of change rate. This is expected as the
SGA does not interact with the changing graph and there-
fore its performance should not depend on the change rate.
However, the DGA presents a very different picture. At low
change rates, the DGA is able to noticeably outperform the
SGA because small changes to the graph do not force sub-
stantial changes to the population and thus evolution can
continue with minor disruption across graph changes. At
higher change rates, there is much more upheaval in the dy-
namic population and so it offers less of an advantage over
the SGA. Because new vertices are added to the individuals
of the dynamic population randomly, the dynamic popula-
tion is much closer to the fresh population of the SGA when
there are lots of new vertices. Thus, the DGA starts to act
more like the SGA as we have a more dynamic problem.

At very low levels of evolution, the DGA clearly offers
better performance because the effects of evolution are al-
lowed to accumulate. The SGA, on the other hand, starts
with a new random population at every step, and thus does
not have enough evolution to find a good solution. In con-
trast, at higher levels of evolution, the DGA performance
only outperforms the SGA at very low change rates because
with more evolution, the SGA has time to catch up with the
evolution accumulated by the DGA.

While these trends are present in both G(n,p, ¢,) and Eu-
clidean graphs, the gap between the DGA and SGA is much

Performance vs. Evolution on G(n,p,c,) Graphs

—
o
o
—_—
_
—
—
—l

ool +
ol +

941

Percentage of Mean DSATUR Colors Used
—@—

92r

— DSATUR
@-® DGA

V-V SGA
0 1000

2000 3000 7000 5000

Evolution Per Step (e)

Performance vs. Evolution on Euclidean Graphs

100

©
©

97

— DSATUR
®-® DGA

Percentage of Mean DSATUR Colors Used

96

V-V SGA

5 "
0 1000

2000

3000
Evolution Per Step (e)

2000

5000

Figure 2: Performance of the GAs relative to DSATUR for varying evolution per step, e, in G(n,p,c,) (left)
and Euclidean (right) graphs. As usual with GAs, there are diminishing returns on the GA performance as
the amount of evolution done is increased. On G(n,p,c,) graphs, increasing evolution leads to better relative
performance of the GAs. On Euclidean graphs, however, the benefit of more evolution levels off much faster.

wider for Euclidean graphs, and the DGA is better able to
outperform the SGA. In a Euclidean graph, the edges are
clustered locally and it is rare for a new vertex to connect
two different sections of the graph. Thus changes in the
graph are felt locally and we hypothesize that a good col-
oring is therefore more easily carried forward from the time
step before. On G(n,p,c,) graphs, however, a new vertex
can cause major disruptions in the coloring from the step
before, and thus there is likely less benefit in keeping a dy-
namic population. This suggests that whenever changes are
local rather than widespread, a dynamic population is better
able to provide performance increases.

3.3 Individuals per Vertex

From our experiments with e and ¢,, it is clear that prob-
lems the allow more evolution per graph time step and have
low change rates are more solvable with dynamic GAs than
problems with higher change rates or problems where the
amount of evolution per graph time step is necessarily lim-
ited. For practical applications, however, it is likely that the
amount of evolution is limited by the availability of compu-
tational resources and that the change rate is dictated by
the how fast the situation being modeled is changing.

For example, we could imagine that we have 4 new tasks
and the computational resources to evolve 1000 individuals
per minute. We might ask: is it better to change 4 vertices
every minute and evolve for 1000 fitness evaluations between
changes, or is it better to change 1 vertex every 15 seconds
and evolve for 250 fitness evaluations between each change?
In the former case we have more evolution per step but a
higher change rate, and in the latter case we have a lower
change rate but less evolution between changes. Which will
offer better performance?

To examine this question of trade-offs, we define a new
parameter, e, = %, which represents the number of fit-
ness evaluations per changed vertex. We then ran the same
experiments as before on G(n,p,c,) graphs for various e,
values at different levels of evolution. The values for nc,

473

€
500 | 1000 | 1500 | 2000
100 5 10 [15 | 20
200 | 25 | 5 | 75 | 10
ev 300 | 3 2 5 2
400 || 1.25 | 25 | 3.75 | 5
500 || 1 2 3 4

Table 1: nc, values (the expected number of changed
vertices each step) determined by e and e,.

needed to achieve a given e, with a given e value are given
in Table 1. Instead of running for 150 time steps, we ran
these graphs until 200 new vertices were added so all runs
would process the same number of vertices. We examine
the performance of the DGA at evolution rates of 500, 1000,
1500, and 2000 against DSATUR for varying e, levels.

As seen in Figure 4, for this problem domain it is clearly
better to choose longer time steps with more evolution and
consequently higher change rates when possible, even though
the DGA performance is generally better at lower change
rates. This suggests that the effect of evolution is stronger
than the effect of change rate in determining the perfor-
mance of the GA. Frequent small changes are harder for the
genetic algorithm to deal with than infrequent drastic ones,
indicating that the time after a change that the genetic al-
gorithm needs to adjust to the new problem is not linearly
proportional to how much the graph has changed. It is bet-
ter to change the problem as infrequently as possible so that
you can maximize the amount of uninterrupted evolution.

3.4 Graph Size (n)

Finally, we experimented with the size of the graph n,
while maintaining a constant amount of evolution (e = 1000).
As seen in Figure 5, the GAs only outperform DSATUR for
graphs with fewer than 200 vertices, and their performance

102
101
100
99
98

96
95
94

% of Mean # of Colors DSATUR Used

97

% of Mean # of Colors DSATUR Used
S
o

Figure 3: Performance of the genetic algorithms relative to DSATUR for varying change rates, ¢,, and
evolution, e, in G(n,p,c,) (top) and Euclidean (bottom) graphs. As change rates increase, DGA performance
converges to SGA performance. This happens faster at higher rates of evolution. On Euclidean graphs, there

Performance vs. Change Rates for Various Amounts of Evolution
G(n,p,c,) Graphs

Evolution (e)= 500

Evolution (e)= 1000

3 | | | | | | |
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Graph Change Rate (c,)

Evolution (e)= 2000

0.00 0.02 0.04 0.06 0.08 010 012 014 0.16

Graph Change Rate (c,)

Evolution (e) = 3000

° °

x 102 T T T T x 102 T T T T T

51017 g 51017 |
Zooor PR AR P3RS | 3o HFH
2 % oot 1 g 99 1
S 98} i{’ 1< gg,f.i_. . %;;;;—i-}}ii{*
o 97—% 1 O 97f - .
5 o6 {1 5 o6} E E
#* #

c 95 1 < 95f E
3 9af 1 & oaaf i
E 9 E 93 I I L !

o o

= 8

971

1 T rrrr+r+ + ¢
] A S S e e e e

f. %i;;; ' SEES SIS SN

i i -
T T 1

102

101
100
99
98|
97
96
95|
94

T

T
I'1T1I

I T T rrrrr r
N I IS S N E E E s

T
T

T
T

-
1

93 L L L L L L L
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Graph Change Rate (c,)

L
% of Mean # of Colors DSATUR Used

Graph Change Rate (c,)

[— DSATUR

e @ DGA

\ 2

SGA|

Performance vs. Change Rates for Various Amounts of Evolution
Euclidean Graphs

Evolution (e)= 1000

93 L L L L L L L
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Evolution (e)= 500

Graph Change Rate (c,)

Evolution (e)= 2000

Graph Change Rate (c,)

Evolution (e) = 3000

kel °
[} [}
%) 0
]]
DD: T T T T T nD: T T T T T
102 1 102f T
5 &
101} ¥V 'V V-V V.w] 101} i
[a] (a]
. t . iiiii$$$$%+
5 100 f$$$ 1 5100} i‘f
o o
o 99t +i 1 2 oo %%%?ii re
S} S}
* ogt 1 * osf .
c c
S o7 {1 & o7} :
E I I I I I I I E I I I I I I I
© 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16©c 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
R X

101
100*
99|
98|

97

T

»—6-&1—»—4

| | | | | | |
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Graph Change Rate (c,)

L
% of Mean # of Colors DSATUR Used

Graph Change Rate (c,)

— DSATUR

e @ DGA

\ 2

SGA|

is a much wider gap between DGA and SGA performance.

474

| | |
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Performance vs. e, on G(n,p,c,) Graphs

© 102 ‘
[%]
=)
< 101]
=)
|_
3100 @ S — PS o
%]
5 99]
o

V-
< 98 A Voo v |
T o7 I:* ***** B SEEEEEE
e IR EETEERE - |
= 96]
o
% 95| — DSATUR *-% DGA, e=1500 |1
S ,/|®® DGA ¢=500 M- DGA, ¢=2000 ||
v Y-V DGA, ¢=1000
& 93

100 200 300 400 500
Fitness Evaluations per Changed Vertex (e,)

Figure 4: Performance of DGA relative to DSATUR at different amounts of evolution per step, ¢, for varying
rates of individuals per changing vertex. Specific values for the expected number of changed vertices (nc,)
for a given e, e, point are given in Table 1, but in general, higher levels of evolution at a fixed number of
individuals per changed vertex require a higher number of changed vertices. Regardless of ¢,, higher rates
of evolution (and consequent higher change rates) have stronger relative performance to DSATUR.

Performance vs. Graph Size on G(n,p,c,) Graphs

©
© 104 .
i Y z :
5 102 Y P]
S T BAY 5
5100— | l H F—t—F—+—%+
5) *//
o o9g *) |
C N //
@© : /
(O] : ’
= 96} » + |
k) S
G) 7/
= 94}]
Z — DSATUR
S o2 ®-® DGA ||
& V-V SGA

90, 100 200 300 400 500

Graph Size (n)

Figure 5: Performance of the genetic algorithms relative to DSATUR for varying sizes of G(n,p,c,) graphs.
As graph sizes increase, the genetic algorithms’ performance relative to DSATUR decreases. However, this
trend levels off as graph sizes continue to increase.

475

relative to DSATUR decreases as the graph size increases.
This suggests that a GA approach may not scale well to very
large dynamic graphs. However, the worsening performance
appears to be leveling off as graph sizes continue to increase,
which is a good sign. It may also be possible to outperform
DSATUR even at larger graph sizes if the GA is given suf-
ficient computational resources. Furthermore, the dynamic
graph coloring problem is still challenging for graphs with
fewer than 200 vertices, so even if GA techniques do not
scale well to large graphs, they could still serve many prac-
tical applications that fall into this size range.

4. CONCLUSIONS AND FUTURE WORK

With this work, we first described different variations of
the dynamic graph coloring problem and defined two dif-
ferent dynamic graph models that extend classical random
graph models. We then explored the effect of several dif-
ferent parameters on the performance of a genetic algo-
rithm with a dynamic population and a genetic algorithm
that starts with a new population at every step relative to
DSATUR for the dynamic graph coloring problem. We are
able to demonstrate conditions where a dynamic population
is able to offer significant performance increases relative to
both a genetic algorithm with a static population and to
the standard graph coloring algorithm, DSATUR. Addition-
ally, the added complexity/overhead of keeping a dynamic
population while the graph changes is insignificant with a
permutation based GA. In all circumstances, the dynamic
population GA performed at least as well as the static popu-
lation GA, and sometimes offered much better performance.

Broadly, this work supports the idea that the more dy-
namic a problem is, an algorithm is less able to utilize in-
formation from earlier time steps of the problem as these
steps are less similar to the current problem. Then, highly
dynamic problems reduce to a succession of static problems,
while slightly dynamic problems are better tackled by a more
dynamic algorithm. Future work is needed to explore graphs
that are edge-dynamic, or both edge- and vertex-dynamic, as
well as graphs with different structures from the two classes
(G(n,p, cv) and Euclidean) examined here.

As mentioned early in the paper, some of the most success-
ful static graph coloring algorithms use hybrid approaches,
combining GAs with other heuristics or local search mecha-
nisms, or use partition-based genetic algorithms. Since this
paper presents the first application of genetic algorithms for
the dynamic graph coloring problem, we chose to keep our
genetic algorithms relatively pure and straightforward, but
it would be interesting for follow-up papers to explore how
much benefit could be gained through hybrid techniques.
Further work also needs to be done in adapting more ad-
vanced static genetic algorithms to the problem of color-
ing a dynamic graph, There are also many variations of the
graph coloring program that correspond to different prac-
tical applications, and future work could investigate if the
techniques outlined here are applicable to dynamic versions
of these problems.

476

S. REFERENCES

[1] BRELAZ, D. New methods to color the vertices of a
graph. Communications of the ACM 22, 4 (Apr.
1979), 251-256.

Davis, L. Handbook of genetic algorithms. VNR
computer library. Van Nostrand Reinhold, 1991.
EIBEN, A., VAN DER HAauw, J.; AND VAN HEMERT, J.
Graph coloring with adaptive evolutionary algorithms.
Journal of Heuristics 4 (1998), 25—46.
10.1023/A:1009638304510.

ERrDOS, P., AND RENYI, A. On the evolution of
random graphs. In Publication of the Mathematical
Institute of the Hungarian Academy of Sciences
(1960), pp. 17-61.

GALINIER, P., HAMIEZ, J.-P., HAO, J.-K., AND
PORUMBEL, D. Recent advances in graph vertex
coloring. In Handbook of Optimization, 1. Zelinka,

V. Snédsel, and A. Abraham, Eds., vol. 38 of Intelligent
Systems Reference Library. Springer Berlin
Heidelberg, 2013, pp. 505-528.

GALINIER, P., AND HAoO, J.-K. Hybrid evolutionary
algorithms for graph coloring. Journal of
Combinatorial Optimization 3, 4 (1999), 379-397.
GAREY, M. R., AND JOHNSON, D. S. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

HARARY, F., AND GUPTA, G. Dynamic graph models.
Mathematical and Computer Modelling 25, 7 (1997),
79-88.

Hauw, K. v. D. Evaluating and Improving Steady
State Evolutionary Algorithms on Constraint
Satisfaction Problems. Master’s thesis, Leiden
University, 1996.

HorrAND, J. Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence. University
of Michigan Press, 1975.

JIN, Y., AND BRANKE, J. Evolutionary optimization
in uncertain environments-a survey. Trans. Fvol.
Comp 9, 3 (June 2005), 303-317.

LovAsz, L., SAkS, M. E., AND TROTTER, W. T. An
on-line graph coloring algorithm with sublinear
performance ratio. Discrete Mathematics 75, 1-3
(1989), 319-325.

MaRX, D. Graph Coloring Problems and Their
Applications in Scheduling. In in Proc. John von
Neumann PhD Students Conference (2004), pp. 1-2.
PREUVENEERS, D., AND BERBERS, Y. Acodygra: an
agent algorithm for coloring dynamic graphs. In
Symbolic and Numeric Algorithms for Scientific
Computing (September 2004), vol. 6, pp. 381-390.
SHIRINIVAS, S., VETRIVEL, S., AND ELANGO, N.
Applications of Graph Theory in Computer Science
An Overview. International Journal of Engineering
Science and Technology 2, 9 (2010), 4610-4621.
SPINRAD, J. P., AND VIJAYAN, G. Worst case analysis
of a graph coloring algorithm. Discrete Applied
Mathematics 12, 1 (1985), 89-92.

STARKWEATHER, T., AND OF COMPUTER SCIENCE, C.
S. U. D. A Comparison of genetic sequencing
operators. No. 106 in Technical report (Colorado State
University. Dept. of Computer Science). Colorado
State University, Department of Computer Science,
1991.

SYSWERDA, G. A study of reproduction in
generational and steady-state genetic algorithms.
Foundation of Genetic Algorithms (1991), 94-101.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

