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ABSTRACT
We employed genetic algorithms to investigate the relation-
ship between stream topographies and their associated hy-
porheic residence time distributions. A hyporheic residence
time is the time it takes a water particle to enter the sed-
iments below a stream, travel through the sediment, and
re-enter the surface water of the stream. This subsurface
journey affects stream chemistry and water quality, and in-
creased knowledge of this process could be helpful in ad-
dressing the environmental problems caused by excess nutri-
ents and waterborne pollutants in riverine ecosystems. We
used a multi-scale two-dimensional model, lightly adapted
from three previous models, to calculate residence time dis-
tributions from system characteristics. Our primary goal is
the investigation of the “RTD inverse problem” – discovering
stream topographies that would generate a specified target
residence time distribution (RTD). We used genetic algo-
rithms to evolve the shape of stream topographies (repre-
sented by Fourier series) to discover shapes that yield RTDs
that closely match the target RTD. Our contributions are:
a) the specification of the RTD inverse problem, b) evidence
that genetic algorithms provide an effective method for ap-
proaching this problem, and c) the discovery of some unan-
ticipated patterns among the evolved topographies. This
early work seems promising and should encourage further
applications of evolutionary computing in this area, with
eventual application to stream restoration projects.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Global Optimization; I.6.6
[Simulation and Modeling]: Simulation Output Analysis

General Terms
Algorithms, Experimentation
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hyporheic exchange, genetic algorithms, stream topographies,
rivers, geophysics, environmental science, Fourier series
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1. INTRODUCTION
In rivers and streams water flows into and out of the sub-

surface (sediments) surrounding the channel in a process
called hyporheic exchange [2, 31]. Studying hyporheic ex-
change is important because in the subsurface solutes are
transformed and deposited, changing the make-up of the
stream’s chemistry and affecting water quality [15, 17, 11].
The longer water stays in the subsurface, the more time mi-
crobial communities have to consume and transform the nu-
trients [28]. Excess unabsorbed nutrients often cause severe
consequences for downstream riverine and oceanic ecosys-
tems; a notable example is the “dead zone” that forms in
the Gulf of Mexico from the overdose of nitrates emitted
by the Mississippi River [10]. Hyporheic flow is frequently
characterized by the subsurface flux (the rate at which water
enters the subsurface) and hyporheic residence time distri-
butions (RTDs). A hyporheic residence time is the amount
of time a water particle spends in the subsurface before reen-
tering the surface water. Both the subsurface flux and the
hyporheic residence time distributions can be approximated
as a function of the shape of the stream topography and
select sediment and surface water flow properties [7, 26, 32].

Given a model for calculating subsurface velocity fields,
residence time distributions may be estimated by measuring
how long simulated particles take to move through the sub-
surface, as shown in Figure 1. Several previous studies have
focused on calculating flux and hyporheic residence time dis-
tributions from the stream topography [7, 26, 4], which we
will refer to as the RTD forward calculation problem. This is
an important and challenging problem, but scientific mod-
els have been developed that can provide reasonable esti-
mates (as we will discuss further in Section 2 below). How-
ever, in this work we investigated the RTD inverse problem,
which is the problem of discovering what stream topogra-
phies would produce a specified residence time distribution.
This inverse problem has not been well-studied; in fact, to
the best of our knowledge this work is the first to explic-
itly pose and explore this question. To be fair, the RTD
forward calculation problem has more immediate real-world
application than the inverse problem, since topographical
characteristics are more readily measurable by field practi-
tioners than hyporheic residence time distributions (which
may require costly and involved “solute tracer” experiments
to measure). Nevertheless, we believe that investigation of
the inverse problem is important because it could lead to
a better understanding of the complex mapping between
topography and residence time distributions. Despite the
existence of predictive mathematical models for the RTD



Figure 1: This figure shows the flume topography dataset used to generate the target RTD for our experiment,
along with illustrative paths (dark blue) that particles take upon entering the subsurface (beige), based on
the velocity field calculated by the forward model. The stream topography is shown in green (regions where
water enters the subsurface) and red (regions where water leaves the subsurface). The surface water is shown
(above) in light blue with the predominant channel velocity flowing from left to right.

forward calculation problem, this mapping is not well un-
derstood. The motivation for this work is not to find one
specific topography for one specific empirical residence time
distribution, but rather to discover patterns that could con-
tribute to the scientific understanding of hyporheic exchange
processes, which in turn would be beneficial for a number of
real-world applications. The inverse RTD problem is partic-
ularly relevant to stream restoration projects, where one of
the goals is to increase denitrification by extending the time
that water spends in the hyporheic zone. Thus, we would
like to know what features of the stream topography tend
to yield desirable RTDs. An improved understanding of the
mapping between topographies and RTDs could also lead
to more accurate predictions of the impact of contaminant
spills on riverine ecosystems.

The inverse problem would be trivial (and relatively un-
interesting) if the mathematical models that have been de-
veloped for the RTD forward calculation problem were ana-
lytically invertible. However, because they are not, we em-
ployed genetic algorithms [12] (as well as uniform random
search and a hill-climbing heuristic) to search through the
space of possible topographies to find a set of topographies
that closely matched a given residence time distribution (us-
ing a forward model to evaluate the goodness of fit compared
with the target RTD.) Our work demonstrates that genetic
algorithms are an effective and efficient technique, and that
their use can reveal interesting patterns about the mapping
between stream topography and hyporheic exchange.

2. RELATED WORK
A variety of models have been used to estimate hyporheic

exchange. The transient storage model is able to character-
ize certain aspects of hyporheic exchange by fitting param-
eters to solute tracer data collected in field studies [11, 2,
16]. Computational fluid dynamics models can be used to
calculated detailed flow fields, but only for systems of lim-
ited complexity or scale [4]. “Pumping models” are spatially
explicit physically based models [7, 27, 3]. They treat the
system as if water is being pumped into and through the
surrounding sediments by gradients in pressure along the
stream-sediment interface. Originally Elliott and Brooks
[7] modeled hyporheic flow by approximating the pressure

distribution over small fluctuations in stream topography
as a single two-dimensional sinusoidal curve. Wörman [32]
extended this to three dimensions and allowed for a non-
permeable bottom boundary to be incorporated into the ve-
locity functions. Stonedahl et al. [26] further adapted the
surface function equation to better account for the multiple
scales and variations found in natural systems, but veloc-
ity calculations were done with numerical approximations
rather than a closed form equation due to additional 3-D
considerations. The velocity function used in this paper
closely resembles that used in Stonedahl et al. [26], but
since we are modeling a relatively simple system, we were
able to use a closed form velocity equation by incorporating
features of Elliott and Brooks [7] and Wörman et al. [32].
The closed form equation provides efficiency advantages that
are crucial when searching a large parameter space.

Evolutionary algorithms have proven not only to be use-
ful for a wide variety of challenging specific real-world prob-
lems, but more broadly we believe they will play an increas-
ingly important role in contributing to how basic scientific
research is performed. As a recent example, Schmidt and
Lipson [24] applied genetic programming to automatically
discover scientific laws from experimental data. Scientific
research is full of hypotheses that require testing, and large
combinatorial search spaces of possibilities. As such, genetic
algorithms (or other evolutionary computation techniques)
may assist researchers in understanding the complex adap-
tive systems that surround us [13].

There are several instances of prior work applying genetic
algorithms in the general area of water resources research.
For example, genetic algorithms have been used as a method
to automatically calibrate a parameter intensive model of
water quality to river and stream field data [18], and they
have been used to optimize parameters controlling the per-
formance of a hypothetical waste water treatment system
in real time to reduce the pollution generated [19]. Ge-
netic algorithms have also been used to optimize ground-
water sampling rates and locations in order to quantify the
trade-off between costs and accuracy [21, 22]. Fewer papers
have combined evolutionary computing specifically with hy-
porheic exchange research, but there are examples, such as
Rowinski et al. [23] who used genetic algorithms to fit five



solute breakthrough curves and quantify hyporheic exchange
for a stream divided into five distinct reaches.

3. METHODS

3.1 Model
Due to the periodic nature of stream morphology, previous

work has found Fourier series to be a useful method for de-
composing the topographic features of stream channels [32,
26]. Furthermore, because any function can be represented
by a Fourier series, this representation for stream topogra-
phy provides considerable freedom in the scope of topogra-
phies under consideration. Thus, Fourier series coefficients
provide a natural representation scheme for stream topogra-
phies, both in the RTD forward calculation model that we
used, as well as for the “genes” in the chromosomal represen-
tation for our genetic algorithm (described in section 3.2.2).

We characterized a stream topography as a series of 30
sine curves. (30 curves was chosen as a sufficient number to
represent multiple scales of stream bedforms, without exces-
sive computational cost for calculations.) Each sine curve is
defined by an amplitude (Ai), and a phase shift (Bi). Specif-
ically, our topography function is of the form:

T (x) = Sx+

30X
i=1

Ai sin

„
2π

„
i

λ
x−Bi

««
(1)

In Equation 1, S represents the slope of the system, x the
downstream distance, Ai the ith Fourier coefficient, λ the
largest wavelength, and Bi the shift for the ith Fourier term.

We calculated residence time distributions for a given to-
pography by tracking 1000 simulated particles through the
system. (Using more simulated particles provides a smoother
and more consistent RTD at the cost of increased calcula-
tion time; some preliminary experimentation suggested that
1000 particles provided a reasonable balance.) The particles
are initially placed on the surface-subsurface interface, with
the probability of being placed at a given point x weighted
according to the positive (inward) flux at that point. The
flux, q(x), is calculated based on the topography and veloc-
ity functions, as described by the following equation.

q(x) =

„
dT

dx
u(x, 0)− v(x, 0)

«s
1 +

„
dT

dx

«2

(2)

In Equation 2, q(x) represents the speed at which water
enters the subsurface at longitudinal distance, x, weighted
by the slope of the topographic surface at x. T refers to the
topography function given in Equation 1. The subsurface
velocity in the horizontal direction, u, and in the vertical
direction, v, are defined in Equations 3 and 4 respectively
(displayed at the top of the following page).

The value hm that appears in these equations can be cal-
culated using Equation 5 below (from [7]):

hm =

8>>>>><>>>>>:
0.28

(Uc)2

2 ∗ g

„
H/d

.34

«3

2 if H/d ≥ 0.34

0.28
(Uc)2

2 ∗ g

„
H/d

.34

«3

8 if H/d < 0.34

(5)

Uc is the mean channel (surface water) velocity, d is the
mean depth of the system, g is the gravitational constant,

and H represents an estimated height of the topography as
defined in Equation 6 (from [26]),

H = 2
√

2σ = 2

vuut 30X
i=1

A2
i (6)

where σ is the standard deviation of T , and Ai the ith
Fourier coefficient. Equations 3 and 4 are an adapted com-
bination of three similar models [7, 26, 32]. After a particle
is placed, its movement through the velocity field (given by
u(x, y) and v(x, y)) is simulated using a constant distance
step of 0.1 cm (chosen small enough to reasonably approx-
imate particle paths). Once a particle reenters the surface
water its travel time becomes a data point in the hyporheic
residence time distribution. One way to visualize these dis-
tributions is by plotting the complementary cumulative dis-
tribution function for the residence time distribution. We
will refer to this function simply as the cumulative residence
time distribution function (CRTDF), which is plotted as the
fraction of particles with residence times greater than a given
time versus that time. The CRTDF starts at 1 (all particles
have a positive residence time) and decreases at each resi-
dence time until it reaches 0 at the time when the last par-
ticle returns to the surface water. A variation on this func-
tion is the flux-weighted CRTDF, which scales the regular
CRTDF by the average flux for the system. This additional
information (about the total amount of water flowing in and
out of the subsurface) allows for a better characterization of
the system. The flux-weighted distribution associated with
the original topography was used as our target distribution
for the genetic algorithm’s search.

The RTD forward model for hyporheic exchange that we
have described above was implemented using NetLogo [30],
which is a multi-agent modeling language.

3.2 Experiment

3.2.1 Calculating fitness
We started with a two-dimensional measured flume topog-

raphy that was presented in a previous hyporheic modeling
study [26]. Besides the topography, we used the system’s hy-
draulic conductivity, porosity, mean velocity, and slope value
(shown in Table 1). We increased the bed depth and sedi-
ment depth parameters each to 30 cm, so that our randomly
generated topographies would never go above or below these
boundaries (which would be illogical and/or characterize a
topography that is outside the domain of reasonable input
for the forward RTD model we are using). We used a Fourier
transform to decompose the flume topography into 30 sine
curves each with their own phase shift and amplitude. Then
we calculated the flux-weighted CRTDF for this topography
using the model described in Section 3.1.

The fitness function for each individual (which represents
a stream topography) was calculated as the sum of the square
of the differences between the flux-weighted CRTDF associ-
ated with the generated topography and that of the target
topography. This function is shown in Equation 7.

fitness =

Z tmax

0

E(t)2 dt (7)

Above, tmax is the maximum time considered (1.081 × 106

seconds, the time required for the target CRTDF to reach
zero), t is time, and E(t) is the difference between the evolved
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Parameter Description Value Units
K Hydraulic Conductivity 0.15 cm/s
θ Porosity 0.33 –
Uc Average Stream Velocity 16.7 cm/s
S Slope −0.00022 –

Table 1: Description/values of model parameters
taken from the flume dataset [26] used for the target
topography in our experiments.

Figure 2: This figure shows two flux-weighted cumu-
lative residence time distributions (CRTDFs). The
original (target) CRTDF is shown in red. The blue
dashed line shows the CRTDF for an evolved topog-
raphy, whose fitness is calculated using the differ-
ence, E(t), between the CRTDFs via Equation 7.

flux-weighted CRTDF and the original flux-weighted CRTDF
at time t, as illustrated in Figure 2.

Since this is an error function, smaller values of the fit-
ness function are desirable. Also, because our GA employed
tournament-selection, only the rank-order of the individu-
als’ fitnesses mattered. As a result, optimizing the fitness
function above is equivalent to minimizing the root mean-
squared error (RMSE), or equivalent to minimizing the Eu-
clidean distance (i.e. L2 norm) between the vectors repre-
senting the target CRTDF and the individual’s CRTDF.

3.2.2 Chromosomal representation
For the RTD inverse problem, we must evolve stream to-

pographies, which are represented by a set of Fourier coef-
ficients. In our experiment, an individual (topography) is

made up of 60 real-coded1 genes (an amplitude and a phase
shift for each of the 30 wavelengths used in our Fourier rep-
resentation of the surface). Despite schema-theory-based ar-
guments for using binary (or other discrete small-alphabet)
chromosomal encodings, real-coded genetic algorithms have
proven quite effective for a variety of real-world problems,
possibly due to their closer match with the problem repre-
sentation [9]. For this experiment, the amplitude coefficient
of each Fourier term is limited to range between 0.0 and 1.0
cm, and the phase shifts (measured as a fraction of their
associated wavelength) also range from 0.0 to 1.0. Because
the Fourier series representation defines a periodic function
over the range of the largest wavelength λ, the phase shift
(B1) can be fixed at 0 without limiting the shape of the
topographies that can be generated. By fixing B1 = 0, we
reduce the danger of the search discovering numerically dif-
ferent Fourier series which are actually equivalent to each
other with respect to a periodic shift. (We are essentially
reducing the dimensionality of the genotype search space by
one dimension, without reducing the set of possible unique
phenotypes.) Thus, our chromosome contains precisely 59
varying genes, each on the range from 0 to 1. The genes are
placed in the following order on the chromosome, A1, B2,
A2, B3, A3, ..., B30, A30. Our rationale for interleaving the
As and Bs in this manner was that it would provide better
linkage for the genetic algorithm’s crossover operator, since
the amplitude and phase shift for a given wavelength would
be adjacent to one another on the chromosome and thus be
more likely to be inherited together during recombination.

3.2.3 Genetic operators
We define two genetic operators: mutation and crossover.

For mutation, each gene has an independent chance (based
on the mutation-rate parameter, which is 3% in these exper-
iments) of taking on a new floating-point value drawn from
a Gaussian distribution that is centered on the gene’s cur-
rent value, with a standard deviation of 10% of the range of
valid gene values2. If a mutation causes a gene to go outside
its valid range (0.0 to 1.0), the gene is assigned the closest
valid value.

The use of recombination/crossover operators in real-coded
and continuous search spaces has a rather turbulent history.

1We ran a second set of experiments using a slight vari-
ation, where the genes were each only allowed to take on
100 discrete numeric values, rather than range continuously.
The results turned out very similar to those reported here
(apart from worse performance by the hill climbing search
algorithm), and did not warrant inclusion.
2These mutation parameters, along with several other GA
parameters, were chosen based on the authors’ intuition and
experience with previous problems; computational time for-
bid performing sensitivity analysis or meta-optimization on
these parameters.



Some influential real-coded methods, such as evolutionary
strategies [20] (ES), eschew the use of crossover entirely, and
rely on the forces of mutation and selection. In the genetic
algorithms tradition, a variety of operators for combining
numeric alleles (e.g., [6, 1]) have been proposed and their
relative merits have been debated. For the sake of simplic-
ity, we chose to apply crossover only in between whole genes
in the chromosome representation: i.e. the value of each
real-coded gene is inherited (intact) from either one parent
or the other, without any averaging or other manipulation.
Because we used a single splitting point and treated genes
as atomic units, this crossover operator was almost identical
to the standard one-point crossover operator for binary en-
codings, except with real-valued genes between 0.0 and 1.0,
rather than binary digits.

3.2.4 Search algorithm setup
In our experiment, we tested the efficacy of three differ-

ent search methods for finding solutions to the RTD inverse
problem. These three methods were uniform random sam-
pling (RS), a random-mutation hill climber (HC), and a
real-valued generational genetic algorithm (GA). The uni-
form random sampling search technique is very simple; it
consists of generating one random individual (set of Fourier
coefficients representing a stream topography) after another,
and recording the one with the best fitness function value.
The random-mutation hill-climbing search heuristic is only
slightly more sophisticated: it chooses a random initial start-
ing position (representing an individual topography) from
the search space, and then applies the Gaussian mutation
operator (described above) to that individual to generate a
new candidate position in the search space. If the fitness
of the candidate position is superior, the hill-climber moves
to that position, otherwise it remains at the same location.
This process of attempted incremental improvement is re-
peated, with the now current location. Finally, the genetic
algorithm (GA) is implemented as a simple generational GA
[12], using the mutation and crossover operators described
in the preceding section, and a population size of 100. The
GA employed tournament selection (tournament size 3), a
crossover rate of 70%, and a mutation-rate of 3% (match-
ing that of the random-mutation HC). The parameters of
all of the algorithms are summarized in Table 2. The ge-
netic algorithm was run for 500 generations, and the other
two search algorithms were run for the equivalent number
of fitness evaluations (50000). We repeated each search 30
times for two reasons: 1) to provide statistically significant
performance results, and 2) to obtain a set of multiple to-
pographies to compare. All searches were performed using
the tool BehaviorSearch [25], which is an add-on for the
NetLogo modeling platform that provides facilities for evo-
lutionary search of model parameters.

4. RESULTS AND DISCUSSION

4.1 Search Performance Results
Before examining the stream topographies that were dis-

covered/evolved as a result of our experiment, it is worth-
while to observe and discuss the performance of the three
different search methods in this problem domain. Unfortu-
nately, there is some “noise” in the fitness evaluation, due to
the random selection of the starting points for the 1000 par-
ticles. Thus, to measure search performance in an accurate

Method Parameter Value

RS N/A (parameterless) N/A

HC mutation-rate 3%

GA mutation-rate 3%

crossover-rate 70%

population-size 100

population-model generational

selection method tournament

tournament-size 3

Table 2: Parameters for the 3 search methods we
tested on our RTD inverse problem.
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Figure 3: Average best-so-far curves for the three
search algorithms tested: RS (uniform random sam-
pling), HC (hill climbing), GA (genetic algorithm).
Each performance curve represents the average of 30
searches with that method, with error bars showing
95% confidence intervals on the mean.

and unbiased manner, each time a new best-so-far individ-
ual was discovered, an additional 10 fitness evaluations were
independently performed (extrinsic to the search process),
and that average fitness value was recorded for performance
evaluation purposes. The resulting performance curves (see
Figure 3) demonstrate, for each search method, the average
fitness measure (error function) for the best individual solu-
tion after any specified number of fitness evaluations. The
key points to observe are:

1. The genetic algorithm significantly outperforms both
the uniform random sampling method and the hill-
climber, achieving a much lower error measure (by two
orders of magnitude!) in much less time.

2. The genetic algorithm performs well consistently (as
indicated by the small error bars).

3. The performance of the hill-climber is initially much



worse than uniform random sampling, since it pro-
gresses more slowly through the search space, but even-
tually surpasses it once the hill-climber has worked its
way to a more promising area of the search space.

One explanation for the genetic algorithm’s strong perfor-
mance stems from the building block hypothesis [8, 14], pos-
tulating that genetic algorithms work by combining small
building blocks, which each contribute individually toward
the individual’s fitness. Thus, the crossover operator may
have combined various building blocks in order to make large
strides early on in the evolutionary process, with the muta-
tion operator serving the purpose of fine-tuning the solutions
later on. Since the quality of the HC and RS results were
comparatively poor, the remainder of the paper will focus
on the results returned by the GA search.

4.2 Topography Results
Let us now turn our attention to the topographies that

the genetic algorithm discovered, and interpret them in the
context of the real-world domain (hyporheic exchange). The
first question in our minds was whether the GA would redis-
cover the original topography that we had used to generate
the target RTD. In theory, the original topography should
yield a perfect match (with error 0) to the CRTDF that
was generated from it. However, because we are approx-
imating the RTD by placing 1000 particles randomly (in
a flux-weighted manner) on the surface-subsurface bound-
ary, the forward RTD model actually provides a (slightly)
different RTD each time a simulation is run. Specifically,
when the model was run with the original topography 100
times (each time estimating the RTD using 1000 particles),
the average error (fitness) value was 6.5 × 10−6, which is
quite close to zero. (To help put this number in perspective,
100 randomly generated individuals yielded an average er-
ror value of 3.6 × 10−3.) The first surprising feature of our
results was that the genetic algorithm consistently (in all
30 searches) discovered a stream topography that provided
a better match for the target CRTDF than the original to-
pography itself did! The mean error value for the 30 GA
results was 2.3 × 10−6 (around one third that of the origi-
nal topography), and the largest error value among the 30
was 3.5 × 10−6 (close to half). This indicates that the ge-
netic algorithm found other topographies which quite closely
matched the target RTD, and was able to do so with less
variation among the resulting distributions. In other words,
the “evolved” topographies had similar hyporheic exchange
profiles (both in terms of total flux and the distribution of
residence times), but were less sensitive to the initial ran-
domized placement of particles in the simulation. Further-
more, although all of the evolved topographies had similar
fitness values, they represented disparate topographies. Fig-
ure 4 shows the 30 evolved topographies overlaid with the
original topography.

The fact that the genetic algorithm returned results that
were different from our original topography (and different
from each other) is important. We are not attempting to
use the genetic algorithm as a function optimizer in this
case - rather we are using it to explore a large search space.
If the genetic algorithm had always returned the exact same
topography, we would have gained very little new or inter-
esting information. For modeling applications where there
is no stochastic component, it is possible that the GA re-
sults may be more consistent, which may not be desirable.

Figure 4: The original topography is shown in red
(thick), while the 30 GA-evolved topographies are
shown in shades of blue and green (thin). (Note
that the axes are not 1:1.)

In such cases, practitioners may want to consider including
additional factors to encourage diversity in the genetic algo-
rithm (e.g., drawing inspiration from prior work on diversity
maintenance [29]) or apply a multi-objective genetic algo-
rithm [5] where one of the objectives is increased diversity.
However, in the present case, the genetic algorithm provided
us with a variety of results, and we can examine a range of
topographies that yield the same (or an very similar) RTD.
The rich variety among the topographies is also interesting
because it reveals something about the mapping between
topography and hyporheic residence-times: namely that the
mapping is not a one-to-one correspondence, but rather a
many-to-one correspondence. This result is not surprising,
but we are unaware of any previous work that has explicitly
demonstrated this.

Despite the variation among the topographies, there are
some patterns/similarities among the results as well. Figure
5 shows the average Fourier amplitude coefficients of the
30 evolved topographies divided by their respective wave-
lengths, compared with those of the original topography.
Dividing by the wavelength makes these amplitudes directly
comparable to one another, and these ratios of amplitude
to wavelength are also proportional to the coefficients in
the Fourier series of the derivative of the topography

`
dT
dx

´
,

which has a large effect on both the flux and subsurface
velocity functions. Thus, this plot may be interpreted as es-
timating the dominant scales of features affecting hyporheic
exchange. There is a clear trend (not apparent in the orig-
inal topography) suggesting that the scales of topography
associated with medium-range wavelengths have the great-
est influence on hyporheic exchange in this system.

We also plotted the coefficient of variation (CV) of the 30
Fourier amplitude coefficients, Ai, versus the correspond-
ing wavenumbers, k (shown in Figure 6) The CV provides
a normalized measure of the amplitude’s variability. Our
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Figure 5: The average of the Fourier coefficients
normalized by their corresponding wavelength are
shown versus their wavenumber.

results show that as the wavenumber increases, so does the
variability of the amplitudes for that wavenumber among
the evolved topographies; evolved amplitudes for smaller
wavenumbers (i.e. larger wavelengths) were relatively ho-
mogeneous. More variability is found among the smaller to-
pographic features, possibly because wavelengths are closer
together and thus individual Fourier terms may be more in-
terchangeable and still have a similar impact on the RTD.

5. CONCLUSIONS AND FUTURE WORK
We do not claim, in this work, to have “solved” the RTD

inverse problem in any broad sense. We have merely in-
vestigated a single instance of the problem, using the RTD
associated with one specific 2-D flume dataset. Neverthe-
less, we believe that this work has broken new ground with
the following contributions:

• Contribution 1: We have posed the “RTD inverse
problem” as a possible avenue for scientific study, to
gain more insight into the complex mapping between
stream topographies and the characteristics of flow
through the subsurface.

• Contribution 2: We have identified an efficient method
(genetic algorithms) for approaching instances of the
RTD inverse problem.

• Contribution 3: We have identified several patterns
in the search results that were unexpected, and which
warrant further study.

Although contribution 1 (posing a problem) may seem rel-
atively minor, it is striking how often in the course of his-
tory seemingly small shifts in perspective have led to break-
throughs in scientific understanding. Contribution 1 may
actually be connected to contribution 2, since it is possi-
ble that others would have previously considered this prob-
lem, but lacked the computational/algorithmic tools to solve
it. Contribution 2 is also important for the following rea-
son. In addition to showing that genetic algorithms were
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Figure 6: The CV (coefficient of variation) of the 30
Fourier coefficients corresponding to each wavenum-
ber are shown versus that wavenumber.

effective for solving this problem, we also showed that uni-
form random sampling and random-mutation hill climbing
(at least with the chosen mutation-rate) were not effective.
This additional information is highly relevant for those pur-
suing research in this area in the future, who might oth-
erwise adopt a naive sampling-based approach. However,
additional experimentation is required to compare the rela-
tive merits of genetic algorithms versus other evolutionary
methods (e.g., evolutionary strategies, differential evolution)
or other metaheuristic search methods (e.g., simulated an-
nealing, particle swarm optimization). The patterns/trends
mentioned in contribution 3 were discussed briefly in Sec-
tion 4.2 above, but the full implications of these patterns
are not yet clear. This provides a natural segue into the
topic of future work. In a narrow sense, specific future
work includes further investigation of why the Fourier co-
efficients for mid-range wavelengths turn out to be more
influential in the hyporheic exchange process for the case
of our target RTD. More broadly, we would also like to ex-
plore what happens when evolving topographies to match
a variety of target RTDs (possibly generated from addi-
tional empirically-measured topographies, or chosen to em-
phasize patterns characteristic of different river systems and
flow conditions). An expanded array of experiments would
also permit more robust inference about the correlations be-
tween the shape of the RTD and the magnitude of certain
Fourier coefficients/wavelengths. Furthermore, our exper-
iments thus far have centered on the simpler case of two
dimensional hyporheic exchange, neglecting lateral stream
effects and large-scale topographic features (such as mean-
ders). Recent work has developed fully three dimensional
models of hyporheic exchange [26, 32], and it would be inter-
esting to extend work on the RTD inverse problem to these
systems. Another important methodological issue surrounds
the variability of simulation results: what does it mean for
one topography to have a greater variance of possible RTDs
that it produces, and is this dependent or independent of the
shape of the RTD itself? An exciting aspect of this work is



that the preceding domain questions, which are both very
interesting, would not have arisen if the evolutionary search
process had not spurred them.

More broadly, we are enthusiastic about the potential for
genetic and evolutionary computation to aid scientific re-
search in hyporheic exchange. Hyporheic exchange mod-
eling is a challenging field, brimming with unsolved prob-
lems and rough order-of-magnitude approximations. It is
also an increasingly relevant field of study, as the appropri-
ate use, management, and preservation of our natural water
resources will become a crucial issue during the 21st cen-
tury. The mathematical and computer models that are be-
ing created to characterize and/or simulate these systems are
necessarily highly complex, and it is our hope that the use
of evolutionary computation and other metaheuristic search
techniques will help researchers develop new insights about
these models.
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[19] Rauch, W., and Harremoės, P. Genetic algorithms in
real time control applied to minimize transient pollution
from urban wastewater systems. Water Research 33, 5
(1999), 1265–1277.

[20] Rechenberg, I. Evolutionsstrategie: Optimierung
technischer systeme nach prinzipien der biologischen
evolution. Frommann-Holzboog Verlag, Stuttgart, 1973.

[21] Reed, P., Minsker, B., and Goldberg, D. A
multiobjective approach to cost effective long-term
groundwater monitoring using an elitist nondominated
sorted genetic algorithm with historical data.
Transportation 1100 (2001), 238.

[22] Ritzel, B., Eheart, J., and Ranjithan, S. Using genetic
algorithms to solve a multiple objective groundwater
pollution containment problem. Water Resources Research
30, 5 (1994), 1589–1603.
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[32] Wörman, A., Packman, A. I., Marklund, L., Harvey,

J. W., and Stone, S. H. Exact three-dimensional spectral

solution to surface-groundwater interactions with arbitrary

surface topography. Geophysical research letters 33, 7

(2006), L07402.


