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ABSTRACT

Genetic Algorithms for the Exploration of Parameter Spaces in Agent-Based Models

Forrest J. Stonedahl

This work provides the first comprehensive investigation of the use of genetic algorithms for
exploring the range of behaviors produced by agent-based models. Agent-based modeling
(ABM) is a powerful computer simulation technique in which many agents interact according
to simple rules resulting in the emergence of complex aggregate-level behavior. However, as
ABM is increasingly employed in both natural and social sciences, the methods and tools for
understanding, exploring, and analyzing the behavior of agent-based models have not kept
pace. In particular, models may be characterized by a large number of parameters, and the
task of discovering parameter settings for which a model will produce a certain behavior is
both difficult and time-consuming. Genetic algorithms (GAs) offer a flexible metaheuristic
search mechanism which has previously been successful in a variety of combinatorial opti-
mization and search problems. There is a rich space of possible model exploration tasks, and
we offer a new unified framework for the creation and application of quantitative measures
to perform these tasks using an evolutionary-search paradigm. We demonstrate the utility
of GAs for ABM parameter exploration through a sequence of case studies in various ap-
plication domains, including behavioral biology, viral marketing, archeology, and web-based

journalism. This work advances agent-based modeling methodology by exploring when and



how GAs can be useful in the model development and analysis process. It also contributes
to a deeper understanding of GAs, by evaluating their strengths and weaknesses with regard
to the particular challenges posed by this problem domain. We develop novel heuristics for
dealing with model stochasticity in conjunction with fitness caching techniques. We also
present the first set of benchmark models/tasks for automated ABM parameter search and
exploration, and we rigorously investigate the performance of GAs on these benchmarks, with
varying levels of stochasticity. An important product of this research is BehaviorSearch, a
new automated software tool for efficient exploration of ABM parameter spaces. The design
and affordances of BehaviorSearch are discussed with respect to improving model exploration

and analysis by ABM practitioners.
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Preface

“.. from so simple a beginning endless forms most beautiful and
most wonderful have been, and are being, evolved.”

— CHARLES DARWIN

Though I can’t remember precise words and must plead for some artistic license as I
paraphrase them below, I can still vividly recall one afternoon several years ago in my thesis
advisor’s office, having just expressed a bit of the traditional graduate student angst about
my chosen thesis topic. “Well,” my advisor responded, “it all depends on whether you want
to have a tidy thesis or a messy thesis. (I must have looked aghast — after all, who in their
right mind would want to produce a messy thesis?) “Don’t get me wrong”, he continued, “my
personal preference is toward messy theses. Tidy theses are narrowly-defined, for example:
‘we present a novel algorithm that performs X% better than all previous algorithms for a
specific problem Y’. Messy theses are much broader in scope, expressing powerful ideas and
looking for the big picture.”

Both types of theses are valuable. In the field of artificial intelligence, we often discuss
problem solving strategies in terms of exploration versus ezploitation. For instance, if you
are going out to dinner, should you order a slight variation of your favorite dish (exploitation
of previous knowledge with high likelihood of modest reward), or try a new and exotic dish

(exploration in the hope of discovering something far better, but the reward is uncertain).



Is it better to take a well-known travel route and refine it, or go out hunting for that elusive
‘Northwest Passage’, which might or might not exist? All good theses contribute something
new to their discipline, and the research process always contains some mix of exploration
and exploitation. But in my view, given this spectrum, “tidy theses” put more emphasis
on the exploitation side, while “messy theses” expend more effort exploring. Perhaps as a
result of my name, I also have a penchant for arboreal analogies. “Tidy theses” are akin
to pine trees, thin spikes reaching straight up toward the sky. “Messy theses” resemble oak
trees, spreading out as they reach upward. Or possibly mangroves, which also reach down,
around, and every which way with their roots. But since this thesis is about evolution-
inspired algorithms, perhaps a better metaphor would be the phylogenetic tree of life. This
tree embodies a grand exploration of divergent speciation, fraught with the extinction of
unproductive branches, graced by the explosion of new life forms arising in unexpected
areas, and sometimes captivating by, as Darwin put it, the “endless forms most beautiful”
that have arisen from so simple a beginning. It is my hope that the intrepid reader of this
“messy thesis” will see beyond the occasional knotted root or twisted branch, and emerge
from the experience with a clearer sense of the whole tree, as well as a few thoughtful seeds

that may bear fruit in scientific explorations of the future.

~ Forrest Stonedahl
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CHAPTER 1

Introduction and Motivation

“It [the computer] is the first metamedium, and as such it has
degrees of freedom for representation and expression never before
encountered and as yet barely investigated.”

— ALAN KAy

“Revolutions always come around again. That’s why they’re
called revolutions.”
— TERRY PRATCHETT, Night Watch

1.1. Backdrop

We are in the muidst of a scientific revolution, resulting from the integration of efficient,
ubiquitous, and inexpensive computation into everyday scientific practice. Perhaps in recent
years the word “revolution” has been so well-worn that it has lost much of its meaning.
Our society is full of pundits and aspiring visionaries declaring how the world, the nation,
the internet, or your routine kitchen cleaning is being (or can be) revolutionized by new
products or technologies. Nonetheless, I contend that this is a true revolution, and that
this revolution has important consequences for the future. Admittedly, digital electronic
computers have been employed in science and engineering settings since their invention in
the early 20th century (and earlier computing machines, such as mechanical calculators or
Babbage’s programmable “difference engine” which go back centuries further). However, for

many years, in the majority of scientific practice, computers were used as little more than
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glorified calculators, capable of evaluating far more complicated mathematical expressions
than were previously possible, and of crunching data more accurately and efficiently (by
many orders of magnitude) than the human “computers” they had supplanted. Although
this capability alone was a giant breakthrough that permitted scientific endeavors to be
undertaken on a previously unimaginable scale, it does not represent the fundamentally
qualitative change which computers are currently making on the way science is conducted.
That qualitative change stems from computer’s universal flexibility — the potential for it to
act like anything else. This is by no means a new idea: pioneers of computing like Alan
Turing and John von Neumann fully recognized this incredible power, and Alan Kay and
Seymour Papert stand out as more recent advocates of the protean nature of computers.
This nature is what allows computers to “simulate” other systems, both real and imaginary,
and it permits the creation of computational models of natural and social phenomena.
However, it is only in the past couple of decades that this form of simulation-based
computer modeling, rather than purely mathematical modeling, has really taken hold and
invaded everyday scientific practice. Whereas 20-30 years ago, science experiments were
being performed in vivo, ex vivo, in vitro, and in situ, today more and more experiments are
being performed in silico. This is no longer merely running statistical regressions and finding
trend lines, but more explicit simulations from first principles, from axioms, from underlying
assumptions, and from observed interactions. And perhaps most striking, it is invading social
science fields traditionally considered to be less quantitative such as anthropology, archeology;,
sociology, psychology, political science, and others. It would be simpler to enumerate the
scientific fields that are unaffected by this paradigm shift in computational modeling. I
believe there are none. This is not to say that simulation is the best approach to solve

any question in any field — only that every field has its share of questions that can be
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approached through simulation. The ability to create virtual models of any phenomena
being studied is incredibly useful, and although this has been known to a few for a long
time, it is being continually rediscovered by scientists and researchers across the globe. The
computer’s capacity to be transformed into a microworld that mimics aspects of reality,
based on the rules that we prescribe for it, permits not just more science, but different
science. Wolfram [2002] argued along these lines in his influential book A New Kind of
Science, although he latched specifically onto cellular automata, which is only one type of
constructive computational modeling, whereas I would argue that cellular automata are often
too constraining to use to model most real world systems, and that other approaches, such as
agent-based modeling (discussed below), usually provide a more flexible approach. Some have
made an analogy between the current transition from traditional equation-based models to
algorithmic computational models and the transition from the Roman numerals to the Arabic
numerals for representing numbers; such transformative shifts require a “restructuration”
of existing knowledge representations, and the result is new paradigm for thinking about
and undertaking science [Wilensky & Papert, 2010; Wilensky, 2006]. The broader point is
that the possibilities for virtual experiments go far beyond those constrained by real-world
experimentation, and they can often provide more explanatory power than mathematical
equations and statistical correlations. There have been many factors contributing to the

current rise of constructive simulation-based computing in science, but several stand out.

(1) The availability of inexpensive and increasingly powerful computing has fueled the

increased adoption.
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(2) The creation of supporting tools and languages (e.g., [Wilensky, 1999, 2000; Resnick,
1994; Resnick & Wilensky, 1993; Wilensky & Resnick, 1999]) have lowered the
threshold for developing such models, especially for non-expert programmers.

(3) Rather ironically, despite academia’s general tendency toward politically liberal
viewpoints, it can be staunchly conservative within its own domain. Even to-
day, many fields continue to reject new methodological tools such as computational
models, clinging fiercely to long-established equation-based techniques. Slowly (but
surely, I believe) the tides are turning, as the new methods diffuse through the social

network that comprises the scientific community.

This setting provides the backdrop for the work of this dissertation, which will focus only
on one specific form of computational modeling (agent-based modeling), and will investigate
the affordances of one specific method (genetic algorithms) of analyzing and exploring the

behavior of such models.

1.2. Agent-Based Modeling

Agent-based modeling' (ABM) is a powerful simulation technique that is being increas-
ingly applied in a wide range of scientific research endeavors [S. Bankes, 2002; Berry, 2002;
Bryson, Ando, & Lehmann, 2007; Harrison, Lin, Carroll, & Carley, 2007; N. Gilbert &
Troitzsch, 2005; Huang, Xiang, Madey, & Cabaniss, 2005; Wilensky & Rand, in press]. Si-
multaneously, agent-based modeling is emerging as its own area of research, focusing on the
study of ABM methodology and associated techniques, rather than on its application to

any particular field. In agent-based models, many agents interact according to simple rules,

Isometimes alternatively called individual-based modeling, or multi-agent simulation
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resulting in the emergence of complex aggregate-level behavior. The emergence of quali-
tatively different behavior at the aggregate-level than at the level of its constituent parts
is a hallmark of complex systems, which has been discussed both in the academic sphere
[P. Anderson, 1972; Simon, 1973; Bar-Yam, 1997] and introduced to lay audiences through
a number of popular books [Waldrop, 1992; Gell-Mann, 1995; J. H. Holland, 1995; Mitchell,
2009]. Attempts to formally prove theoretical properties of these complex agent-based sys-
tems rarely succeed, and in most cases more empirical methods of analysis and testing are
necessary [Edmonds & Bryson, 2004]. However, the number of controlling parameters (and
range of possible values) for agent-based models is often large, the computation required to
run a model is usually significant, and the models are predominantly stochastic in nature,
meaning that multiple trials must be performed in order to assess the model’s behavior (see
Figure 1.1, for example). These factors combine to make a brute-force exploration (or “fac-
torial design” experiment) of model behavior infeasible. Furthermore, agent-based models
may constitute complex systems in which the interactions between parameter settings are
highly non-linear, so testing the effects of varying individual parameters separately is not
a reliable approach for predicting the effects when multiple parameters are varied simulta-
neously. Despite those caveats, the simplicity of these analytic approaches (factorial and
univariate) has resulted in widespread use throughout the modeling community.

In my estimation, the current state of affairs is grim indeed. At a recent conference I
attended, I was shocked when one of the keynote speakers (who shall remain nameless),
admitted that he usually did not perform any type of parameter variation (not even basic
factorial sweeps) even though he is in the business of using agent-based models to advise the
U.S. Department of Defense on a variety of high profile issues. Unfortunately, this anecdote

highlights that the problem is in part a cultural one. Regardless of what new and improved
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Figure 1.1. The NetLogo Ethnocentrism model [Wilensky & Rand, 2003; Ax-
elrod & Hammond, 2003]. In this case, there are eight model parameters, each
of which may take on a large range of values. One parameter, immigrants-per-
day, is integer-valued, while the other seven are real-valued (continuous). If
each parameter may vary between 10 possible levels, the size of the search space
would be 108, and evaluating a single point in that space requires multiple sim-
ulation runs (replicates) since the model is not deterministic. Assuming that
it requires only 10 replicates, and each run takes only 10 seconds, a complete
exploration of this search space would take 10! seconds, or approximately 317
years for a single processor.

model exploration techniques we propose, or how user-friendly we can design the software
for performing these tasks to be, issues like these will persist until the cultural norms of
the agent-based modeling community have shifted to give appropriate weight to the analysis
of model parameters as part of the verification and validation within the modeling process
[Wilensky & Rand, 2007, in press]. At present, the sophistication of parameter exploration
methods varies widely across and within modeling communities, and in most cases best

practices have not been established. However, the socio-cultural battle for increased rigor



38

in agent-based model analysis is outside the scope of this thesis, and I am optimistic that
the availability of more advanced (yet easy-to-use) methods of exploration (such as those
promoted in this document) will break down some of the technical barriers to change, and
help to move this scientific community in the right direction.

While simple methods like factorial sweeps are adequate in some cases, there is a large
class of agent-based models for which the parameter space is too large and the interac-
tions between parameters are too complex. Thus, more sophisticated search techniques are
needed to explore and discover interesting areas of the parameter space. Genetic algorithms
[J. Holland, 1975; D. E. Goldberg, 1989] are one natural choice, since they have proven to be
successful in numerous nonlinear combinatorial search/optimization problems. The general
idea of genetic algorithms will be introduced in Section 1.4 below, as well as explained in

greater detail in the specific context in Chapter 3.

1.3. Illustrative Example

In order to discuss the general problem of model exploration in a more concrete manner,
let us elaborate one example that demonstrates the utility of searching the parameter-space
of an agent-based model. In particular, consider an agent-based model of airplane boarding,
similar to the simulations performed by Ferrari and Nagel [2005], or Capelo et al. [2008].
In such a simulation, each passenger is modeled as an agent with varying characteristics
(assigned seat, number of carry-on items), who will enter the aircraft (according to various
boarding-group schedules), move toward their seat, place their luggage in an overhead bin,
and sit down. As any frequent flier knows all too well, this process may be delayed by stand-
ing in the aisle, waiting for other passengers to get out of the way, getting up out of a seat to

let someone else pass to their window seat, etc. One goal of creating a simulation could be
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to determine what policies an airline company can make that would hasten and/or smooth
the boarding process (as in [Ferrari & Nagel, 2005]). However, social scientists might wish to
study the process of airline boarding for entirely different reasons. Psychologists might wish
to examine frustration levels as a result of delays in the distributed queuing process. Social-
ogists or anthropologists might be interested in using airplane boarding studying cultural
differences in pairwise spatial distances between strangers in a constrained environment.
Economists might want to investigate price discrimination in seating order, and the differen-
tial utility in going earlier rather than later in the boarding process. In each of these cases,
an agent-based model of airplane boarding would allow scientists to explore counter-factual
scenarios, test the sufficiency of various hypotheses as generative explanations for the ob-
served behavior, etc. For an extended (and much more eloquent) discussion of the reasons
for and benefits of creating agent-based models (which go significantly beyond prediction),
I point the reader to the excellent short paper “Why Model?” by Joshua Epstein [2008].
Regardless of the purpose of model creation, there are a number of parameters associated
with an ABM such as this. First, there are parameters that the airline may have some control
over (boarding seat schedule, number of carry-on items allowed, amount of intervention by
airplane stewards in the boarding process, floor plan of aircraft, etc). It might be useful to
find choices for these parameters that yield minimal time for the boarding process. This is
a classic case of “simulation optimization”, but in fact model exploration extends beyond
optimization in many ways, as will be discussed further in Chapter 3. One might also
be interested in finding so-called leverage points [Forrester & Collins, 1969; Meadows, 1997;
J. Holland, 2008] in the space, where a small increase in one (or several) parameters can yield
a considerable change in system behavior (e.g., a drastic decrease in boarding time). Second,

the model may also have numerous parameters that the airline has little or no influence over
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(passenger movement rate, passenger’s preferred interpersonal distance, number of children
on the flight, number of passengers that arrive late at the gate, time required to step aside for
another passenger by to get to their center or window seat, time required to place bags in an
overhead bin as a function of unused bin capacity, etc). While some of these parameters can
be estimated by field observations and historical data, there will inevitably be uncertainty
about some of these values.

When suggesting a policy decision on the basis of simulation results, it is important to
know how poorly that decision might fare as a result of incorrect estimates of these pa-
rameters. To achieve this, we might perform a worst-case multivariate sensitivity analysis
by searching for parameter settings (within the parameters’ feasible ranges) that yield the
slowest aircraft boarding scenarios. Another relevant task is model parameter calibration
or “tuning”. In particular, if a data set is available that provides information on how long
boarding times have historically taken, then it would be possible to search for parameter
settings that closely match the real-world data by attempting to minimize the error between
simulated and real results. This act of calibrating the model with empirical data can assist
in the process of model validation. Additionally, search can be used to test the model for
conceptual flaws or programmatic errors. For instance, when searching the parameters for
minimal boarding time scenarios, if the search method discovers parameter settings such that
a Boeing 747 can board all passengers in less than two minutes, either the simulation model
is faulty (possibly due to a programming bug), or one (or more) of the parameters being
considered is falling seriously outside the ranges that are feasible in the real world. This line

of thought opens up avenues for automated model testing via search. In short, searching a
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Figure 1.2. This is an example visualization of an agent-based model of aircraft
boarding, which is a reproduction of Figure 2 from Capelo et al. [2008]. In this
simulation each passenger is modeled as an individual agent that can interact
with other agents. This is in contrast to aggregate-based modeling techniques,
such as using differential equations to describe the rate passenger flow into the
cabin as a function of the number of passengers already seated.

model’s parameter space for extreme results can lead to the discovery of interesting infor-
mation about model behavior that can be useful in various phases of model development,
testing, and analysis.

Although I have only discussed a single example from the airline industry, agent-based
modeling is applicable to a wide variety of fields. A brief (and necessarily far from exhaustive)
alphabetic sampling from the literature includes examples of ABM in: anthropology [Axel-
rod & Hammond, 2003], archaeology [Axtell et al., 2002], bioterrorism [Carley et al., 2006],
business management [North & Macal, 2007], ecology [Grimm & Railsback, 2005], educa-
tion [Abrahamson, Blikstein, & Wilensky, 2007], marketing [Rand & Rust, 2011], materials
science [M. Anderson, Srolovitz, Grest, & Sahni, 1984], medical research [An & Wilensky,
2009], military tactics [Ilachinski, 2000], neuroscience [Wang et al., 2008], political science
[Epstein, 2002], social policy [Maroulis et al., 2010], sociology [Schelling, 1969], urban devel-

opment and land use [Brown, Page, Riolo, Zellner, & Rand, 2005], and zoology [Bryson et
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al., 2007]. In addition, agent-based modeling appears to be playing an increasing role in the
burgeoning cross-disciplinary field of “network science” (see, e.g., [Guimera, Uzzi, Spiro, &
Amaral, 2005; Holme & Newman, 2006]). In some of these fields, the models that are created
may emphasize exploring controllable model parameters for the sake of discovering policies
and making decisions, while in others the focus may tend toward model calibration, testing,
and verisimilitude with respect to real-world data. However, regardless of the discipline in
which the agent-based modeling is practiced, some form of automated parameter exploration

can benefit the process of understanding or analyzing these models.

1.4. Genetic Algorithms

Genetic algorithms [J. Holland, 1975] belong to a family of evolution-inspired algorithms,
such as evolutionary strategies [Rechenberg, 1973] and evolutionary programming [L. J. Fo-
gel, 1966], that have been invented (independently) in Europe and the United States. More
recent variations on evolutionary algorithms include genetic programming [Koza, 1992], dif-
ferential evolution [Storn & Price, 1997], and grammatical evolution [C. Ryan, Collins, &
Neill, 1998]. The rise of bioinformatics sometimes leads the uninitiated to believe that genetic
algorithms (GAs) involve the application of computer science algorithms to the decoding of
the DNA /genome of biological species. However, the situation is quite the opposite. In-
stead, genetic algorithms result from the application of principles of biological evolution to
computer science, to form a domain-independent problem solving technique. In other words,
genetic algorithms seek to “evolve” solutions to challenging problems by artificially mim-
icking the forces of variation and natural selection on a reproducing virtual population of
candidate solutions. Because of its generality and domain-independence, genetic algorithms

is described as a “meta-heuristic” search algorithm.
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Because genetic algorithms have proven successful on a wide range of nonlinear combina-
torial search/optimization problems, they form a natural choice for a search mechanism for
exploring the behavior of computer simulations (and agent-based models more specifically).
In fact, one of the earliest applications of genetic algorithms was in optimizing parameters
for a simulation of a living cell [Weinberg, 1970], and there have since been many various
applications of GAs to parameter optimization problems (e.g., [Grefenstette, 1986; Béck &
Schwefel, 1993]). Additionally, previous studies by myself [Sondahl & Rand, 2007] and others
[Mitchell, Crutchfield, & Das, 1996; Packard, 1988] have demonstrated GA’s success when
evolving rules for cellular automata, which can be considered a restricted subclass of parame-
ter search in agent-based models. Several different researchers have either tried or suggested
the use of genetic or other evolutionary algorithms for ABM parameter search tasks [Capo-
rale, Serguieva, & Wu, 2009; Heppenstall, Evans, & Birkin, 2007; Narzisi, Mysore, & Mishra,
2006; Calvez & Hutzler, 2005], but the bulk of prior work has focused on answering specific
questions regarding a single specific agent-based model. Related work in this area will be
discussed in much greater detail in Chapter 2; however, in summary, this idea has received

scant systematic attention thus far.

1.5. Overview of Document Structure and Contributions

This thesis document is structured as follows. Chapter 2 provides the first comprehen-
sive literature review of research in this area, tying together themes from the exploration
and analysis of agent-based models to relevant work in the area of genetic algorithms and
metaheuristic search. Chapter 3 proposes a theoretical and methodological framework called
“Query-Based Model Exploration” (QBME), which provides the necessary structure for syn-

thesizing the various ideas and concepts that are demonstrated in the case studies that follow.
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The development of this comprehensive framework is, in itself, a contribution to the field.
Chapters 4-7 provide case studies that illustrate how and why genetic algorithms can be
an effective exploratory mechanism for the parameter-space of ABMs. Each of these case
studies is essentially written to stand on its own, providing sufficient background in both
the case study domain and the relevant ideas of evolutionary ABM exploration. Chapter 4
demonstrates the use of exploratory searches to discover the range of behavior produced by
models of collective animal movement (i.e. “flocking” behavior). Chapter 5 shows how ge-
netic algorithms can be used to explore a model of diffusion of innovation in social networks,
in order to a) find good strategies for viral marketing campaigns, and b) discover intriguing
differences between how real and abstract social network structures interact with this agent-
based model. Chapter 6 tackles the issue of model calibration and sensitivity analysis, using
genetic algorithms to search the parameter space of the well-known “Artificial Anasazi” sim-
ulation. Chapter 7 delves further into the question of how different calibration measures
may be more or less effective as fitness functions for driving the evolutionary search process,
in the specific context of matching a new agent-based model of consumer behavior in online
news browsing with a real-world dataset. Each of these case studies makes a contribution
to its specific domain area, as well as illustrating principles and general ideas about the
broader topic of using genetic algorithms for exploring agent-based models. Following the
case studies, Chapter 8 transitions into a more abstract /mathematical treatment of the prob-
lem of stochasticity in agent-based simulation, and how this “noise” affects the effectiveness
of search processes that use “fitness caching” to reduce redundant computation. This leads
naturally into Chapter 9, which provides a comparison of genetic algorithms performance
(vis-a-vis other search algorithms) on a variety of benchmark model analysis tasks, with and

without fitness caching, and with varying levels of repeated sampling (for noise reduction).
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This chapter’s contributions are at least two-fold: 1) the creation of a set of benchmark
model exploration tasks provides a valuable baseline for future research in this area, and 2)
this work provides the first comprehensive comparative study of genetic algorithms perfor-
mance for this type of task. It also provides a basis for evaluating the mathematical measures
of noise derived in Chapter 8. It is my belief that theoretical research should be grounded
in real-world problems, and conversely, that theoretical results should inform and enhance
the practice of the field. Accordingly, Chapter 10 discusses the design of a practical soft-
ware tool (BehaviorSearch) that I have developed and released in order to bring the QBME
methodology for model exploration and analysis (described in Chapter 3) within the reach
of the greater scientific modeling community. BehaviorSearch incorporates insights from my
theoretical research into the design of a low-threshold tool for the automated exploration of
agent-based model behavior, and it interfaces with NetLogo [Wilensky, 1999, 2001; Tisue &
Wilensky, 2004], which is a premier agent-based modeling language and integrated modeling
environment. Finally, Chapter 11 provides some closing remarks and shares several ideas for
future research that I believe will be fruitful, based on the perspective I have gained through
this experience.

This thesis centers around one underlying question: do genetic algorithms provide an
effective search technique for exploring the parameter spaces of agent-based models (ABMs)?
I claim the answer to this question is “yes”. However, to fully address this question, a simple
“yes” or “no” answer will not suffice; and thus I will dissect it into a series of more specific

questions:

e How can genetic algorithms be used to answer the type of questions that modelers

are concerned with?
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e What type of modeling analyses are amenable to this approach?

e What results have genetic algorithms found on real research modeling tasks?

e How effective are genetic algorithms relative to comparable techniques?

e What factors influence their efficacy, and how might they be improved to better

address the particular challenges posed by this problem domain?

Along the way, I will also justify why this research direction is worth pursuing, using a
combination of real-world modeling problems and classic/abstract models drawn from the
complex systems research community. In particular, I will argue for (and demonstrate) the
utility of integrating intelligent search/optimization techniques into the practice of agent-

based model exploration and analysis.
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CHAPTER 2

Literature Review

“We build too many walls and not enough bridges.”
— Isaac NEWTON

“A person who won’t read has no advantage over one who can’t
read.”

— MARK TWAIN

The question of how to explore and analyze the behavior of agent-based models (as well as
other types of computer simulation) is a broad one, and it has been approached from different
directions by different researchers. Sometimes there is a tendency in the various academic
disciplines to carry out research that is isolated from other disciplines, and publish in their
own field’s specialized journals and conferences. Whether conscious or not, this tendency can
result in creating walls between research carried out in one domain and another. However,
since agent-based modeling is an inherently cross-disciplinary methodology® I will attempt
(through this literature review) to bridge some of the gaps between disparate communities
and offer a holistic survey of the relevant ideas in play. I will first discuss some of the
methods suggested for exploring models in general, before turning to search-based methods
in particular. This will be followed by a discussion of research from the genetic algorithms

literature that is appropriate to the agent-based model exploration problem domain.

LABM is similar in this regard to fields like statistics, which cut across disciplinary boundaries. However,
unlike statistics, which is relatively mature, agent-based modeling is quite young and has (as yet) few
dedicated journals and conferences. Perhaps in the future, ABM research will become less fragmented.
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2.1. Overview of General Methods for Model Exploration

A first approach to exploring the parameter-space of agent-based models is through hu-
man interaction and/or supporting visualization tools. It is common practice for researchers
to experiment with different settings of their models, according to their intuitions. By using
knowledge and intuitions about the inner workings of the model, humans are often able
to more efficiently navigate the parameter-space than computer algorithms which treat the
model as a “black box”. Fehler et al. [2006; 2004] have suggested a methodology they
call “white box” calibration, in which humans use their knowledge of the model’s structure
to decompose the model into smaller units, thus effectively reducing the parameter-space
that must be considered. While “white box” approaches provide clear benefits, in many
cases model decomposition may be extremely hard or even impossible. Another possibil-
ity is to let humans view and process the results of evaluating points in the search space,
form their own mental models of the shape of the space, notice trends or search for points
(parameter-settings) of interest. The greatest challenge here is to help humans make sense
of the high-dimensional space by providing visualizations that humans can translate into
an understanding of model behavior. A full survey of this research is beyond the scope of
this paper; however, Horne and Meyer [2004] discuss some work on visualization tools and
exploration methodologies for ABM results, and others [Kornhauser, 2009; Kornhauser &
Wilensky, 2009] has been developing a novel interactive exploration tool and associated vi-
sualization techniques (see Figure 2.1). However, there are several persistent problems with
approaches that rely on human knowledge to guide the exploration process. Humans may be
biased (either consciously or unconsciously) when exploring the model’s behavior, humans

can easily make erroneous assumptions about the interaction of model parameters and their
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effects on overall model behavior, and bugs (either conceptual flaws or simple coding errors
that researchers are unaware of) may be present in the model. All of these factors can
lead humans to neglect the exploration of regions of the space that they expect to be un-
interesting, and therefore miss important findings. Additionally, manual model exploration
can be very time consuming and possibly tedious for humans, whereas algorithmic methods
can tirelessly explore the space and eventually report findings for a human to review. As a
general prescription, I believe that the best practice is to combine human-interactive explo-
ration with computer-automated methods: use human intelligence and intuition to explore
the model’s behavior, but also use unbiased? algorithmic methods to find points of interest
that the humans might have missed.

A second (and more automated) approach to model exploration stems from the classic
“design of experiments” (DOE) literature [Fisher, 1971], which is concerned with how to
efficiently sample points in a space in order to understand the effects of factors in an exper-
iment. DOE has often been employed in agriculture to design experiments to test different
growing conditions. For example, suppose there are 10 different chemicals that could be
applied to the soil (10 factors), each with three different levels of potency (3 levels), giving
a total of 3'° possible treatment combinations. Some examples of experimental designs in-
clude the factorial design (which tries all levels of all factors), the Latin hypercube design
(which guarantees a certain degree of representativeness while sparsely sampling the space
— see Figure 2.2), and the sphere-packing design (which attempts to efficiently cover the

space while sampling few points.) While these methods are potentially useful for designing

2Technically, all search methods apart from uniform random search are biased in some sense, as they make
implicit assumptions about the structure of the search space - for instance, that good solutions are more
likely to be found near other good solutions. However, computer search methods are arguably not biased
in the same way that humans are (this point will be revisited in Chapter 11), and certainly one would not
accuse a computer of having an externally motivated agenda when performing model exploration!
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Figure 2.1. Screenshot of a prototype version of Kornhauser and Wilensky’s
[2009] tool for visual (human-driven) exploration of ABM parameter spaces.

experiments for exploring agent-based models, Sanchez and Lucas [2002] point out several

drawbacks to applying classic DOE methods to agent-based simulation. For instance, classic

DOE methods often assume that interactions between factors are either linear or low-order

effects, which may not be true in ABMs. Also, DOE tends to choose all the points to eval-

uate ahead of time, whereas in computer simulations it is often possible (and desirable) to

choose new points to evaluate sequentially, using information gained from previous results.

Naturally, there is considerable interest and ongoing research in applying and extending

DOE methods to better handle computer simulation [Kleijnen, Sanchez, Lucas, & Cioppa,

2005], agent-based simulation in particular [Sanchez & Lucas, 2002], and also on “adaptive
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Figure 2.2. Latin Hypercube Sampling (example shown above for a two-
dimensional space) samples each parameter setting exactly once within each
dimension, as opposed to a factorial experiment design which would sample
all combinations of all parameter settings. If interactions between parameters
were linear, one might be able to extrapolate behavior across the parameter
space from this small sampling. However, ABM parameter spaces are often
fraught with complex nonlinear interactions.
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designs” (alternatively called “sequential” or “dynamical” experimental designs) [Van Beers

& Kleijnen, 2008; Ankenman, Nelson, & Staum, 2008], including application to multi-agent

systems in particular [Klein, Bourjot, & Chevrier, 2005]. Recent work has also attempted

to use machine learning methods to create inverse mappings between model parameters and

measurable model outcomes, based on experiment data [Miner, 2010; Miner & desJardins,

2008]. Using techniques such as these, it is possible to create metamodels of the space

(linear, polynomial, kriging, or others), perform sensitivity analysis, or screen out which

model factors appear to be relatively unimportant. In the DOE approach to exploring the

parameter-space of agent-based models, the focus is usually to say something general about

the whole space. In contrast, the genetic algorithms approach discussed in this thesis will
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focus more on searching for specific points in the space in order to answer questions about
model behavior. However, the distinction between search techniques and adaptive experi-
mental designs can be fuzzy at times, as they sometimes seek to solve similar problems.
Finally, some simulations permit another form of exploration - through proof and analytic
methods. If the simulation rules are constrained to be of a particular form (e.g., certain
discrete event simulations), it may be possible to use logical inference methods to prove
patterns or constraints regarding model behavior without running the model repeatedly
with different parameter settings. However, this approach to exploration does not apply to
unconstrained agent-based models of complex systems that are written in Turing-complete

languages (such as NetLogo [Wilensky, 1999] or Java).

2.2. Search-Based Exploration of ABMs

Search methods provide another way of exploring the parameter space of an ABM. In
this context, the word “search” is closely tied to methods of “optimization”, since we may
design an objective function that expresses the characteristic behavior that we are searching
for. As mentioned in the aircraft boarding example in Section 1.3, it is possible to construct
objective functions that will search the parameter-space for various types of model behavior
or outcomes. However, it can be challenging to design an appropriate objective function
that both captures the desired model behavior and provides a good search gradient. One
contribution of this thesis is the development of a methodological framework to support the
design of objective functions for different model exploration and analysis tasks, which is
covered in Chapter 3.

Since the search problem is posed as an optimization problem (maximizing or minimizing

the objective function), I should note that there has naturally been considerable research
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attending to the optimization of computer simulations in general, partially because there is
considerable commercial incentive to finding optimal (and/or robust) configurations of sup-
ply chains [Shapiro, 2001], engineering design [Fox, 1971], financial market portfolios [Rock-
afellar & Uryasev, 2000], and other systems modeled in industry. Numerous optimization
techniques have been developed for both restricted and unrestricted problem domains, linear
and nonlinear, constrained and unconstrained, with discrete and continuous parameters, for
local and global optimization, etc., etc. The academic field of optimization is broad, diverse,
and somewhat fragmented. Nevertheless, it is worth mentioning several papers from the
simulation optimization research community that do not use evolutionary search, including
a review paper [Kleijnen & Wan, 2007] that discusses OptQUEST [Glover, Kelly, & Laguna,
1996], which is a notable commercial package that uses scatter search and tabu search in
conjunction with a neural network surrogate model for doing simulation optimization. Wake-
land et al. [2005] give an example of using both OptQUEST and a genetic algorithm for
doing verification and validation of a software process simulation model. There is also some
promising recent work on a new search technique (COMPASS) that provably converges to
local optima despite noise under certain conditions [L. J. Hong & Nelson, 2006]. Although
this field of literature deals more generally with the optimization of computer simulations,
and not specifically with the sub-genre of agent-based modeling, the methods and challenges
discussed are often relevant to ABM as well.

My thesis research focuses on genetic algorithms because they possess several character-
istics that are useful for this domain. First, genetic algorithms are a metaheuristic tech-
nique that is general enough to handle the mix of boolean, integer, discrete, continuous,
and categorical parameters that may be present in agent-based models. This rules out

gradient-descent-based methods (which require a differentiable function), as well as other
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techniques (including linear programming, quadratic programming, integer programming,
nonlinear programming, and others) that are tailored for all-numerical parameters or ex-
plicit numeric functions. Second, the objective functions are almost always stochastic and
may be non-convex® and genetic algorithms have often proven effective at escaping local
optima in the search space [K. A. De Jong, 1975|, as well as progressing towards a goal
despite noisy environments [Fitzpatrick & Grefenstette, 1988]. Third, the choice of genetic
algorithms is motivated by an intuition that the crossover operator will be able to take ad-
vantage of building blocks (in this case, subsets of the model parameters which work together
to elicit certain model behaviors), or partial solutions, to speed the search process.

Using evolution-inspired search methods to optimize computer simulation parameters is
not a new idea — in fact, evolutionary strategies were invented by Rechenberg in the 1960s
with engineering-related parameter optimization problems in mind [Rechenberg, 1973], and
genetic algorithms were proposed for the parameter optimization of complex systems by De
Jong [1980] as early as 1980. Moving beyond a focus on optimization, in the 1990s Bankes
[1994] proposed that evolution-inspired algorithms be used more broadly for exploring com-
puter simulations and Miller [1998] recommended their use for testing/calibrating/analyzing
system dynamics models.

Let us now shift the discussion to parameter search that is specifically in the context
of ABM, rather than computer simulation in general. As mentioned in the introduction,
most prior work on the use of genetic algorithms for searching the parameter-space of agent-
based models has focused on answering specific questions for specific agent-based models.

For example, Heppenstall et al. [2007] show that a GA can be an effective method for

3In “non-convex” functions, local extrema are not guaranteed to be global extrema. Non-convexity excludes
the use of a large class of efficient optimization algorithms, generally making the search task more difficult.
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calibrating parameter settings for an ABM of petrol retail markets. Similarly, Caporale et
al. [2009] use evolutionary programming? to calibrate a model of contagion in multi-national
financial markets. Skolicki et al. [2008] employ a co-evolutionary algorithm to evolve both
terrorist and security scenarios. There have also been several recent examples of using multi-
objective genetic algorithms to search for parameters that provide good trade-offs between
several output metrics regarding the behavior of ABMs such as trading in financial markets
[Rogers, Tessin, & Eurobios, 2004] and emergency response planning [Narzisi et al., 2006].
In general, these projects focused on the specific application area, and not on providing
a broader perspective about how genetic or other evolutionary algorithms can be used for
ABM parameter search.

One exception to this trend is the recent work of Calvez and Hutzler [2005], which pro-
poses a framework for using genetic algorithms to tune the parameters of ABM. However,
even here, their framework was illustrated only by one realization of a genetic algorithm be-
ing applied to answer several questions about one particular agent-based model. Specifically,
they report preliminary results for one case study of using a GA to optimize different output
quantities on the NetLogo Ants Model [Wilensky, 1997a], which simulates an ant colony per-
forming pheromone-based food foraging. However, their case study involved the evolution
of just two parameters, they did not compare their results to a baseline measure, and nor
did they provide comparisons to any other search methods or different agent-based models.
Additionally, the conceptual framework they proposed leaves much room for improvement.

The example fitness (objective) functions they describe cover only a subset of the possible

4Evolutionaury Programming (EP) is an optimization method developed by L. Fogel [1966] that is similar
to genetic algorithms although generally lacks the crossover operator. For an explanation of the (some-
times subtle) differences between genetic algorithms (GA), evolutionary strategies (ES), and evolutionary
programming (EP), please refer to this overview paper by Béck [1993].
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use cases for model exploration, and they only begin to address the interaction between sim-
ulation stochasticity and search algorithm dynamics. They include examples of maximizing
the ant foraging efficiency, finding parameters that will yield three concurrent ant lines, and
calibrating the model to match predetermined data. In short, Calvez and Hutzler provided
a valuable preliminary foray into this research area, but both the framework and methods
prescribed deserve considerable expansion, as well as additional validation and support.

To expand on their work, I have developed a more complete/unified framework (elabo-
rated in Chapter 3 for both developing behavioral measures for ABMs and applying them as
fitness functions. The framework includes additional use cases such as model testing, sensi-
tivity analysis, identification of critical/leverage points, finding robust or volatile parameter
settings, and extreme scenario discovery. This work is partially inspired by John Miller’s
[1998] seminal work on “active nonlinear testing”, which proposed the use of nonlinear search
methods for a variety of useful tasks involving the testing and analysis of simulations. Specif-
ically, Miller used a genetic algorithm and a random-mutation hill-climber to search through
the parameter space of system dynamics models (SDMs), which model aggregate-level quan-
tities by numerically integrating differential equations over time. Because ABMs and SDMs
share several common features, some of these ideas will transfer directly. However, there
are differences as well, such as the micro-macro link, and the stochasticity of results that
are typical of ABMs, but not present in SDMs. Unfortunately, to date little work has been
done to extend or expand upon the ideas that Miller proposed. We remedy this primarily in
Chapter 3, as well as with additional considerations interspersed throughout the case studies
(Chapters 4 through 7).

In other related work, Brueckner and Parunak [2003] suggested a method of exploring

the parameter-spaces of ABMs by using an agent-based approach (one might consider it a
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meta-level ABM), coupled with a fitness function to measure how interesting each point in
the space was considered to be. In this scheme, which they call Adaptive Parameter Sweep
Environment (APSE), “Searcher” agents (using heuristics to move through the parameter
space) would allocate more trials in areas of higher fitness (provided they had not already
been extensively examined). This approach is also reminiscent of Particle Swarm Optimiza-
tion [Kennedy, Eberhart, et al., 1995] (with global attractive forces between agents based
on fitness). In this work, Brueckner and Parunak [2003] demonstrated that their APSE ap-
proach could successfully discover phase transitions in one example ABM of distributed graph
coloring, and that this approach was more efficient than a grid-based (factorial) simulation
experiment. However, they did not provide any comparison with other possible techniques
or metaheuristic search algorithms such as GAs.

Yahja and Carley [Yahja & Carley, 2006] have also approached the problem of model
exploration and validation, but their method uses a knowledge-based inference engine and
causal reasoning, in an attempt to emulate the causal reasoning that human scientists use.
Yahja and Carley argue for the superiority of this method over genetic algorithms, but
they did not perform any objective comparisons. While it may be tempting to assume
that knowledge-level reasoning mechanisms will offer improvements over an evolutionary
approach, this is not necessarily the case. It is worth considering that in nature, the “blind
watchmaker” has designed many creative and powerful solutions to challenging problems that
have, as yet, escaped the ingenuity of human engineers. Regardless of this quasi-philosophical
debate, until the capabilities of genetic algorithms have been more fully investigated, they
should not be discounted as an effective problem-solving method in this domain.

The list of related work would be incomplete without mentioning the SADDE method-

ology [Sierra, Sabater, Augusti, & Garcia, 2004], in which a modeler starts with an EBM
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(Equation-Based Model — for literature comparing ABM and EBM, see [Parunak, Savit, &
Riolo, 1998; Wilensky & Reisman, 2006, 1998]) describing aggregate-level patterns of the
system, and then designs an ABM to match the EBM, using evolutionary algorithms for
the calibration of ABM parameters. Sierra et al. [2004] demonstrate the SADDE method-
ology using a case study of the U.S. electricity market. They first develop equations to
characterize aggregate-level behavior of the market, and subsequently build an agent-based
model of the market. Using genetic algorithms to tune several parameters that affect the
behavior of producer and consumer agents in the ABM, they were able to find parameter
settings that fulfilled the macro-level requirements, as specified by their EBM. This example
again suggests that genetic algorithms may be a useful tool for this type of parameter search
task, but this is merely a single data point, and no comparisons were made with alternative
techniques.

As an additional side note, there are many other ways that evolutionary algorithms can
be combined with agent-based modeling, in addition to searching parameter spaces. In fact,
evolutionary algorithms can themselves be conceived of as a multi-agent system. For exam-
ple, Socha and Kisiel-Dorohinicki [2002] propose a new multi-object evolutionary algorithm
using an agent-based design approach, and Stonedahl and Rand [2008b] propose an agent-
based model of the diffusion of innovation across social networks, which may equivalently be
understood as a distributed genetic algorithm with a restrictive breeding network. Alterna-
tively, the rules by which individual agents act can also be evolved by genetic programming,
either before or during the model runs (e.g., [Panait & Luke, 2004]). Also, each individual
agent can simulate human decision-making or intelligence by using a genetic algorithm as

a mechanism for choosing good strategies (e.g., [Rand & Sondahl, 2004]). I mention these
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other possibilities only to distinguish them from the form of ABM/GA integration that my

research will focus on, which is parameter-space exploration.

2.3. Related Genetic Algorithm Research

In this section, I will discuss literature regarding genetic algorithms and/or metaheuristic
search, and with regard to various challenges that are characteristic of ABM exploration
problem domain, even if they are not fully specific to it.

These challenges include the slowness of fitness evaluation, the noise in the fitness function
created by model stochasticity, and the issues of chromosomal representation when mixing

continuous and discrete parameters.

2.3.1. Noisy fitness functions

One of the challenges posed by searching the parameter-space of agent-based models is the
stochastic nature of the simulation. The use of randomness is such a prevalent feature in
ABM that NetLogo’s agent scheduling is randomized by default and special measures must
be taken to cause the agents to always take action in the same order. Randomness commonly
plays many other roles in an ABM as well: breaking ties when choosing between alternatives,
allowing agents to act based on probabilities. This stochasticity is often a beneficial trait
from a modeler’s perspective, since it makes the model more robust against fluke events
and accidentally biased results. Even if we presume that the phenomena being modeled
does not involve any “truly” random processes, the use of numbers drawn from random
distributions can serve to represent any source of variance in the system that is not being
explicitly modeled. For instance, in Schelling’s [1969] classic model of spatial segregation

in residential areas (see also the NetLogo version of this model, [Wilensky, 1997d]), when
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agents are “unhappy” with their current location, they use randomness to select a new place
of residence. Obviously, the real reasons people choose a house are far from random: they
may wish to be close to their work, in a good school district, near a park/library, or aspects
of the house itself (fireplace, patio, etc) may appeal to them. However, rather than trying
to explicitly model heterogeneous agent preferences, many of which are unobservable, for a
multitude of criteria along myriad dimensions, the choice of relocation can be simplified to
a single decision made randomly. The randomness represents our lack of specific knowledge,
and abstracts away many details that are unnecessary to the larger point that Schelling
sought to make (i.e. that even “weak” prejudice among individuals can lead to strong
“segregation” at the population level).

However, from a search-based perspective, the use of randomness means that even when a
model is run with precisely the same set of parameters, different results will occur each time,
as a result of different initial seeds for the pseudorandom number generator. A common
approach is to treat each model run as a signal with some amount of noise, and to run
the model for a fixed number of trials and take the mean (or perhaps median) value of the

results. There are two potential issues with this.

e If you are searching the parameter space for a particular objective function, and you
have limited computational resources, it is preferable to distribute trials based on
how promising the individual (or perhaps the region of the parameter space) is. For
instance, if after 10 trials, the fitness of an individual is significantly less than the
fitness of other individuals in the population, does it still make sense to run another
20 trials on that same individual, in order to improve the statistical significance of

the estimate?
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e The noise in the output of an agent-based model often means something. It may be a
measure of the predictability or robustness of the current parameters. Furthermore,
consider that there may be two attractors in the phase space of the system. If the
output measure is 0 half the time, and 100 half the time, it may be misleading to

condense this to a mean value of 50.

The former point will be discussed in more detail in Chapter 8, and the latter in Chapter 3.

There has been considerable prior research about genetic algorithms in the presence of
noise and uncertainty; Jin and Branke [2005] provide a good survey of this area. Also,
Jaskowski and Kotlowski [2008] recently offered several approaches for statistically selecting
the best individual among the members of the final generation of the GA, when the fitness
function is noisy. More specifically, in the context of calibrating parameters of ABM Calvez
and Hutzler [2005] considered the problem of noise, and offered a rough guideline that prac-
titioners should first try running many replications at one point to estimate the “error rate”
as a function of the number of replications, to get an idea of how many replications should be
run to get an error rate of less than, e.g., 5 percent. However, this approach makes an implicit
assumption that the error rate is constant throughout the parameter space, and they do not
relate how the estimated error rate actually affects the progress of the genetic algorithm
towards an optimal solution. Furthermore, they recommend a novel approach of running
only a single replication in most generations but running many replications every Nth gen-
eration, to get a better estimate of actual fitness. However, they offer neither theoretical nor
empirical evidence that this novel approach is superior to more traditional techniques; the
issue of controlling the variation of fitness function noise in a generation-dependent manner

like this deserves further investigation. In short, the interplay between the stochasticity of
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ABM simulations and the genetic algorithm’s ability to search noisy fitness landscapes is not
fully understood. Without a deeper understanding and improved methodology, practitioners

may choose methods of dealing with noise that are simplistic, ad hoc, and inefficient.

2.3.2. Computational cost

Another challenge for applying genetic algorithms to agent-based model exploration is the
typical slowness of fitness evaluation. Agent-based models are often computationally de-
manding, with thousands of agents interacting over many thousands of model “ticks” (units
of simulated time). If the model takes a long time to run and allotted search-time is con-
strained, then sacrifices must be made which will affect the genetic algorithms performance:
either the GA population must consist of fewer individuals, the number of generations that
the GA is allowed to run must be reduced, or the individuals must be evaluated less frequently
or less extensively. Too small a population will be unable to support sufficient diversity dur-
ing the search process, and result in considerable “inbreeding”, which is likely to prevent
any positive effects of crossover. On the other hand, running for too few generations will not
allow the GA to converge on a good solution. As has just been discussed in Section 2.3.1,
one way to evaluate individuals less extensively is by taking the average of fewer model runs,
which constitutes a trade-off between signal noise and computational effort. There is some
evidence that the performance of the genetic algorithm on noisy problems can be improved
by decreasing the amount of sampling of individuals, while instead increasing the population
size [Fitzpatrick & Grefenstette, 1988].

There are a number of additional approaches that attempt to reducing computational
time for fitness functions that are slow to evaluate, including using parallel or distributed

genetic algorithms, fitness approximation, fitness inheritance, and fitness caching. While
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parallel genetic algorithms, surveyed in [Cantu-Paz, 1998], are undoubtedly useful, and will
become increasingly so as the world shifts toward more parallel computing architectures,
in some sense these approaches are sidestepping the issue problem by applying more hard-
ware. Fitness approximation, surveyed in [Jin, 2005], involves the use of a surrogate fitness
function which is cheaper to evaluate than the real fitness function, but provides only ap-
proximate results. The genetic algorithm then uses the surrogate fitness function some of
the time, and the real fitness function some of the time. This is a promising direction, al-
though automatically finding a surrogate function that gives a good approximation to the
result of the complex nonlinear processes that take place in an agent-based model may be
prohibitively challenging. (Although surrogate fitness functions fall outside the scope of the
present work, some of the analysis of ABM fitness landscapes in Chapter 9 may offer clues
about the feasibility of this approach moving forward.) In fitness inheritance [R. Smith,
Dike, & Stegmann, 1995], individuals in the population sometimes inherit fitness values by
averaging the values of their parents, rather than evaluating the real fitness function. This is
based on the premise that children will tend to have fitness values that are highly correlated
with their parents fitness, and so we may be able to approximate directly from their parents
(some fraction of the time) without actually evaluating them. However, initial studies using
fitness inheritance were performed using simplistic fitness functions, and there is concern
that the approach does not scale well to non-convex functions found in real-world prob-
lems [Ducheyne, De Baets, & De Wulf, 2003]. On the other hand, fitness caching [Kratica,
1999] is a straightforward approach that involves the memoization of the fitness function,
so that future evaluations at the same location in the parameter space will not have to run
the ABM again. The more that individuals are likely to recur during the search, the more

savings will result from caching. However, previous cases of fitness caching [Kratica, 1999;
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Kratica, Tosic, Filipovic, Ljubic, et al., 2001] did not consider the interplay between caching
and noisy fitness functions, which may negate the result mentioned above [Fitzpatrick &
Grefenstette, 1988] that increased population sizes are often more beneficial than increased
sampling. As part of this thesis work, I provide both analytic and empirical investigations
of fitness caching in the presence of noise, found in Chapters 8 and 9. Besides attempting
to eliminate the computational cost of re-running ABMs at the same settings, there may be
value in recording all fitness evaluations made during the progress of the genetic algorithm,
either to use this information to more intelligently guide the search process or to post-process

this data to discover other interesting features of the parameter space.

2.3.3. Chromosomal representations

As demonstrated by the Ethnocentrism model [Axelrod & Hammond, 2003; Wilensky &
Rand, 2003] introduced in Chapter 1 (see Figure 1.1), as well as a recent linguistic model
about how language change may diffuse in a social network (see Figure 2.3), agent-based
models may contain a variety of parameter types, including boolean parameter, integer-
valued parameters, discrete numeric parameters, continuous numeric parameters, categorical
parameters, strings of text, and potentially even more unusual types such as lists, matrices,
colors, or bitmap images. In section 2.2, I mentioned that this was one of the motivations for
using genetic algorithms, since they are a flexible enough search technique to handle these
different representations. Unfortunately, there is scarce literature studying tradeoffs and
appropriate choices of GA chromosomal representation when dealing with mixed data types.
Although Holland’s original discussion of genetic algorithms [1975] mentioned the possibility
of using non-binary alphabets, the majority of early GA research focused on binary strings.

After all, on a digital computer, any data type can always be encoded as a sequence of bits.
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Figure 2.3. Top left: A visualization from the Diffusion of Language NetL-
ogo model, which investigates language change occurring in a social network
context. Top right: A plot of average population-level grammar preferences
versus time (demonstrating complex dynamics). Bottom: The 18 controlling
parameters of this model: 8 categorical, 4 integer-valued, 5 real-valued, and 1
boolean.

On the other hand, the independently conceived evolutionary strategies [Rechenberg, 1973]
used only real-coded genes from the start. The first implementation of real-coded genes in
the “Michigan school” of genetic algorithms was in Weinberg’s 1970 thesis. In time, the
field of real-coded genetic algorithms blossomed and there has been much more work in
this area than can be overviewed in this document. Some debate around these two gene

representations arose, as well as attempts to understand their strengths and weaknesses,
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and resolve the theoretical differences between them [D. E. Goldberg, 1991]. Additionally,
there is continued debate on the topic of crossover on real-coded genomes, as naive averaging
approaches proved to be inadequate in many cases. Various mechanisms have been proposed,
including attempts to apply insights from binary-coded crossover [Deb & Agrawal, 1995], as
well as recent work on “parent-centric” crossover [Ballester & Carter, 2004a] which in some
sense functions as a self-adaptive mutation rate, based on the spread of the population in
the space.

Despite the volume of discussion about real and binary representations, as noted above,
there seems to be very little literature regarding the appropriate use of mixed representa-
tions (though a hybrid approach was employed recently with reasonable results [Gantovnik,
Anderson-Cook, Giirdal, & Watson, 2003]). Although this topic is not a particular focus
of this dissertation, throughout this work I have used a variety of binary, real-valued, and
mixed representations. Anecdotally, I did not find a strong trend regarding which chromo-
somal representation might be superior for this domain, as the genetic algorithm appeared
to work well with several representations. However, there are many open and intriguing
questions, including: when is it preferable to convert parameters into binary format as op-
posed to letting them remain numeric? how should crossover be performed in a mixed-coding
representation? and how can mutation-rates be appropriately calibrated across the mixed-
representation genome? I feel that a more rigorous treatment of these questions would make
a good topic for further research (possibly even another thesis) in this area. Answering these
questions would be useful in the particular domain of ABM exploration, but perhaps also
offer insight into the use of mixed genome representations in general. Lacking definitive

answers from the literature, I find the mixed representation to be most natural, as this most
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closely preserves the genotype-phenotype mapping, and this was the representation used for

the benchmark comparison performed in Chapter 9.

2.3.4. Exploration versus optimization

Considerable research has focused on genetic algorithms as function optimizers, seeking in-
put values that will achieve the single best global maxima or minima (for a given objective
or fitness function) [Ashlock, 2006]. However, as has been argued by De Jong [1993], genetic
algorithms were designed not as function optimizers, but rather as a mechanism inspired
by real evolution, which engages in an adaptive exploration process of a complex and time-
varying landscape. This observation provides further support for the choice of genetic algo-
rithms, as similarly the goal may in part be exploration of the parameter space, rather than
finding a single optimal point. While modelers may be interested in global minimization or
maximization, this is not the extent of their curiosity. For example, knowing the point of the
parameter space that produces the least smog in model of air pollution is useful, but in some
cases identifying multiple regions of low smog is arguably more beneficial. Thus diversity
maintenance in the genetic algorithm’s population may be a more important consideration
than convergence to a global optima in the search-algorithm. More generally, it is worth
emphasizing that exploration does not equal optimization, though the two tasks are related,
and often have substantial overlap.

Some work which bears more toward exploration, is the recently proposed “scouting al-
gorithm” [Pfaffmann & Zauner, 2001}, which is essentially an evolutionary algorithm hunting
for “surprises”, or points in the search space that give a value considerably different from
what is expected, given the values at nearby neighboring locations in the space. It has also

been proposed that the idea of “scouting” can be integrated with an evolutionary algorithm



68

that is searching for some objective function, as a means of avoiding premature convergence
on local optima [Pfaffmann, Bousmalis, & Colombano, 2004; Bousmalis, Hayes, & Pfaffmann,
2007]. Another interesting approach to encourage exploration in the space is the use of co-
evolution, inspired partially by the “estimation-exploration” algorithm proposed by Bongard
and Lipson [2005]. In their algorithm, however, the goal is to identify a system that would
produce the same results as some unknown system, which can be probed at great expense.
However, a similar coevolutionary approach could employ a population of metamodels that
are attempting to estimate the fitness space, and award individuals that give results that

were poorly predicted by the metamodels, thus indicating a region of potential interest.

2.3.5. Searching for a cheap lunch

Another broad consideration which must be addressed is whether the central thesis prob-
lem is well-posed. In particular, this thesis is about demonstrating the efficacy of genetic
algorithms for the exploration of agent-based model parameter-spaces. Part of this process
involves demonstrating that genetic algorithms are more effective for this than other search
techniques. However, the space of all possible agent-based models covers much territory, and
as agent-based models can be very different from each other, the shape of their parameter-
spaces may also vary greatly. Is it, therefore, reasonable to assert that some search algorithm
is better than any other for this large class of problems? This objection stems from the aptly
(and entertainingly) named “No Free Lunch theorem” [Wolpert & Macready, 1997], which
in paraphrase, states that over the class of all possible functions, no search technique will
outperform any other, and in particular none will perform better than a random search. Of
course, no one is ever trying to search the space of “all possible functions”, so this theorem’s

pragmatic application is limited; real world problems come in various shapes and sizes, but
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their search spaces often contain regularities and continuities that distinguish them from an
arbitrary randomly-chosen function. However, there have been further arguments made that
there is still “no free lunch” even for more restricted classes of functions with features that
are similar to some real-world problem domains [Droste, Jansen, & Wegener, 2002].

I have several responses to these concerns. First, the philosophical /hypothetical objec-
tions are not very constructive; from a practical standpoint, there is an important need
for tools to explore behavior in agent-based models, and in order to build such tools, some
search algorithm (or ensemble of search algorithms) must be chosen. There is a tendency
for people to over-interpret the No Free Lunch theorem as being more damaging to meta-
heuristic search research than it is in practice; in some situations the NFL theorem can
help prove the general superiority of one search technique over another. For example, in an
ironic twist, Whitley [1999] applied the NFL theorem to show how one form of search-space
encoding (gray encoding) could in fact be provably superior to another for most real-world
problems. Second, I should clarify that we do not expect one single search algorithm (genetic
or otherwise) to be the most efficient mechanism for exploring every conceivable agent-based
model. However, it may be that some single method does work quite well for exploring most
agent-based models. Third, despite the many differences between agent-based models, there
are a number of features that most agent-based models share, and some search algorithms
will certainly be better suited to these features than others. For instance, the stochasticity
of model runs results in noise in the objective function, and some search methods handle
noise more effectively than others. In fact, as we will show in Chapter 9, genetic algorithms
prove to be broadly effective for parameter exploration on a representative set of models and

exploratory tasks (see Chapter 9).
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The No Free Lunch theorem provides a cautionary warning to search and optimization
researchers, that one should not expend fruitless energy seeking the single silver bullet or
holy grail that will solve every problem. However, it does not diminish the importance of
seeking effective search algorithms for reasonably broad categories of real-world problems,
nor is it a serious impediment to showing that genetic algorithms can be highly effective for

ABM exploration tasks, which is a goal of this thesis.

2.4. Tools for Automated ABM Search and Exploration

This section will attempt to detail past research, and the present state of the art, with
regards to tools for ABM parameter-space exploration. In recent years there has been con-
siderable growth in the area of toolkits and libraries that support the creation of agent-based
models, but considerably less emphasis on supporting exploration and analysis of those mod-
els [N. Gilbert & Bankes, 2002; S. C. Bankes, 2002]. As mentioned in section 2.1, there has
been some recent work on visualization and interactive exploration tools [Kornhauser, 2009;
Horne & Meyer, 2004]. However, I will restrict my attention here to search-based exploration,
as that is most directly relevant.

A recent survey of extant agent-based modeling toolkits [Railsback, Lytinen, & Jackson,
2006] reviewed four major toolkits suitable for research modeling: Swarm [Minar, Burkhart,
Langton, & Askenazi, 1996], MASON [Luke, Cioffi-Revilla, Panait, & Sullivan, 2004], Repast
[North, Howe, Collier, & Vos, 2005; Collier & Sallach, 2001], and NetLogo [Wilensky, 1999;
Tisue & Wilensky, 2004]. Swarm models may be written in either Java or Objective-C, and
modelers wishing to perform parameter search could write their own routines from scratch
in one of these languages. MASON models are written in Java, and MASON was designed

to integrate with ECJ [Luke, 2000], an evolutionary computation library written in Java



71

by one of the authors of MASON. Similarly, Repast S includes a partial framework for
parameter optimization, which users can extend Java classes and interfaces to create their
own algorithms of moving through the search space. Implementations of hill climbing and
simulated annealing are provided, but there is no built-in support for genetic algorithms®.
Of these ABM toolkits, NetLogo is the only toolkit that has its own multi-agent language
and integrated modeling environment. NetLogo also provides a Java controlling API, so
that users could write their own programs for doing exploration, as well as an interface that
allows NetLogo to be controlled by Mathematica, which has several built-in optimization
algorithms. However, the current available methods for parameter search generally require
substantial computer programming and demand a fluency with code libraries or in some
cases writing algorithms from scratch. They are largely inaccessible to modelers who are
not advanced programmers, and even for advanced programmers, they do not provide any
built-in scaffolding of the most common tasks (e.g., searching for a large mean value across
some number of replicate runs). Nor is there straightforward support for using parameter
search to perform more complex search tasks such as model calibration, sensitivity analysis,
volatility or robustness testing, or phase transition discovery.

MASS (Multi-Agent Simulation Suite) [Ivanyi, Bocsi, Gulyas, Kozma, & Legendi, 2007]
is a relatively recent addition to the ABM toolkit world. It contains a formal (though some-
what constrained) modeling language (FABLE), but it also includes a model exploration
module (MEME) [Ivanyi, Gulyds, Bocsi, Szemes, & Mészaros, 2007] which is capable of in-

terfacing with models written in Repast, NetLogo, or plain Java, as well as FABLE models.

SRepast S does include a genetic algorithms library as part of the distribution, but it is configured for
evolving agents (or agent-level properties), and not for model parameter-search.
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MEME is the most similar tool to BehaviorSearch that is currently available. It provides flex-
ible support for several different experimental designs (such as Latin Hypercube Sampling),
and is currently moving toward support for more dynamic or adaptive search algorithms for
experimentation with model parameters. For the past few releases, MEME has included an
option that mentions John Miller’s ANT (active non-linear testing) functionality, and a very
recent build of the MEME software added a plugin for genetic algorithms. Neither of these
features is documented, and they appear to be relatively experimental at this point.However,
this is clearly a direction that this tool is moving towards in the future, and MEME should
provide a second tool (besides BehaviorSearch) that will support aspects of the query-based
model exploration framework discussed in Chapter 3. There are several important differ-
ences between MEME and BehaviorSearch. At present BehaviorSearch only interfaces with
the NetLogo modeling toolkit, whereas MEME is designed to support models written with
a variety of toolkits. However, as discussed further in Chapter 10, BehaviorSearch (like Net-
Logo) has an explicit goal of being low-threshold — that is, being easy for novice modelers to
use and get started with, and its simple/straightforward integration with NetLogo supports
that goal. (BehaviorSearch also provides a host of features useful to support advanced users,
as detailed in Chapter 10).

In addition to these five well-known toolkits discussed above, there many alternatives.
Nikolai and Madey [2009] provide a fairly exhaustive list of extant agent-based modeling
libraries and tools (53 in total), though the strength of their survey is breadth rather than

depth. T will only discuss a few other tools/projects which seem particularly relevant.

e The SeSAm environment [Kliigl, Herrler, & Fehler, 2006] also provides tools for

visual modeling and experimenting with agent-based simulation. While the project
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website makes a reference to support for searching for parameters that maximize
some objective function, I was unable to discover any such facilities, either in the
software’s user interface or documentation. This appears to be a work that is still
in progress.

e Pfaffmann and Jenkins [2008] expressed the intention to begin designing tools and /or
techniques to automate experimentation with agent-based models, using some form
of evolutionary search techniques (such as scouting [Pfaffmann et al., 2004]), but
this project does not appear to have produced any publicly-available tools thus far,
and the status of the project is currently unknown.

e Yahja and Carley [Yahja & Carley, 2006] have been developing WIZER, a “what-
if analyzer” for the purpose of exploring and/or validating very large social agent
simulations (specifically, the BioWar [Carley et al., 2006] simulation of bioterrorism
attacks). As was mentioned in Section 2.2, this tool employs a logic-based inference
and causal reasoning engine (not genetic algorithms) to navigate through the model’s
parameter space. While they propose their methodology as a general approach, the
WIZER software is currently designed to work specifically with the BioWar model
and would require considerable modification to transition it into a generic software
tool that is applicable to typical agent-based models. Furthermore, the emphasis
of their work is on designing a system that can perform experiments and reason
independently, rather than providing a tool for modelers to use to explore their own

models.

In conclusion, there is currently an unfilled need for a low-threshold tool for performing

parameter search for agent-based model exploration.
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CHAPTER 3

Query-Based Model Exploration: A Theoretical Framework

“Science is what we understand well enough to explain to a com-
puter. Art is everything else we do.”

— DoNALD KNUTH

“The purpose of models is not to fit the data but to sharpen the
questions.”

— SAMUEL KARLIN

By Knuth’s definition (and arguably many others), the process of developing agent-
based models is currently more of an art than a science. While the artifacts of the process
(constructed models) are specified at a level of specificity that a computer can understand and
execute, the act of modeling is a complex product of human ingenuity. I believe this state of
affairs will remain largely the case until the advent of significant breakthroughs in artificial
intelligence. However, this does not mean that certain aspects of the modeling process
cannot become more scientific, or even automated by computers. This chapter introduces
a theoretical framework for exploring agent-based model behavior using evolutionary search
algorithms. In doing so, it is my goal to contribute toward the science of agent-based model
analysis.

The description of the Query-Based Model Exploration (QBME) framework provided in

this chapter in split into four major sections:
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e The first section (Section 3.1) formalizes the concept of the behavior of an ABM in
terms of the data it produces.

e The second section (Section 3.2) focuses on the formulation of measures of agent-
based model behavior.

e The third section (Section 3.3) focuses on ways that these measures can be applied
to accomplish a variety of important model analysis tasks.

e The fourth section (Section 3.4) discusses genetic algorithms, and how behavioral

measures are used as fitness functions in the search process.

The QBME framework hinges on a paradigm shift in how people explore and analyze agent-
based models. I will briefly explain this paradigm shift, and then go on to discuss the two

organizing principles that the framework is built around — levels of analysis and diversity.

Parameters and Paradigms

When you run an agent-based model, you are implicitly asking (and answering) the question:
what is the behavior of the model given parameter settings (pi1, p2, ps,...). As we'll discuss
more below, you may have to run the model multiple times with these parameter settings
to get a good idea of what the model’s behavior is, but this is the general paradigm. I
would like to encourage a paradigm shift for model analysis, which essentially inverts the
question. Instead of asking “what behavior will I get with a certain set of parameters?”,
what if instead we were asking questions of the form “what parameter settings will give me
a certain behavior?” More formally, if we are interested in some behavior B, then what
settings of the parameters (pq,p2,ps,...) will result in the greatest expression of B. The

difference in model exploration workflow for these paradigms is shown in Figure 3.1. While
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Traditional Workflow QBME Workflow

Set Parameters Choose Behavior

y

Quantify Behavior

Y

Run Model Run Model
(several times with (repeatedly with
these parameters) varying parameters)
Observe Behavior Examine Parameters

(that most strongly

elicit the behavior)

Figure 3.1. Flowchart highlighting the difference between the QBME paradigm
and the traditional paradigm for model exploration.

the idea of shifting perspective in this way is very simple, the new paradigm requires the

elucidation of several steps of this process.

(1) How can we quantify an interesting model behavior in a way such that we can search
for parameters that yield it? (Discussed all throughout Sections 3.2 and 3.3.)

(2) How can we efficiently and effectively search the parameter space for a given behav-
ior? (Discussed in Sections 3.4.1 to 3.4.4 .)

(3) How should we interpret the parameters that are returned by the search process?

(Discussed especially in Sections 3.4.5 and 3.4.6.)

This chapter will address these questions while elaborating the QBME framework, and the

following chapters will address them more concretely in the context of case studies.
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We move next to a brief introduction of the framework’s organizing principles (levels of
analysis and diversity), although these themes will be revisited continually throughout this

chapter.

Thinking in levels

In the context of learning about and understanding complex systems and multi-agent models
of those complex systems, the importance of thinking about levels of complexity has been
well-established by a bulwark of research in the cognitive and learning sciences [Wilensky
& Resnick, 1999; Penner, 2000; Raia, 2005; Chi, 2005; Jacobson & Wilensky, 2006; Sabelli,
2006; Goldstone & Wilensky, 2008; Levy & Wilensky, 2008b]. The importance of levels has
also been recognized by complex systems and ABM methodologists [Bar-Yam, 1997; Parunak
et al., 1998; Epstein, 1999; Wilensky & Rand, in press|, as well as dissected and discussed
by various philosophers of science® [Simon, 1973; Wimsatt et al., 1994]. In most cases, the
focus of this work has been on two levels of analysis: the agent (or individual) level, and the
aggregate (or population) level. These two levels are at the heart of understanding complex
systems because the agent-based model demonstrates how aggregate-level behavior emerges
from the interaction of individuals. However, in order to provide a framework for creating
behavioral measures of agent-based models, we must consider levels of analysis that are
both below (i.e. intra-agent) and above (e.g., comparing multiple simulation trials) these

standard levels?. The QBME framework also must take the temporal aspects of agent-based

IFor example, the philosophical subfield called “mereology” is dedicated to the formal study of the logical
properties of the relation of part and whole. However, whether the existing literature in mereology can
substantially contribute to our understanding of emergence in complex systems remains in doubt.

ZNot all of these “levels” will necessarily meet the definition of “emergent levels” as set out in [Wilensky &
Resnick, 1999] — although phenomena and patterns at a higher level often emerge from interactions at a lower
level, in some cases I will use the word “level” to denote simple containment relationships, or hierarchical
levels.
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simulation into account, in order to characterize model behavior over time, which defines a
“temporal level” of analysis (if we allow the word “level” to be broadly construed). When
unpacking the levels of analysis that are required for the exploration of the parameter spaces
of agent-based models, we will begin at the most basic level (that of a single agent), and

work our way up to the highest level (diversity of results among different search methods).

Diversity in complex systems

Diversity is the second organizing principle for this framework. In recent years, there has
been an increased interest in studying the effects of diversity in complex systems [S. Page,
2010; S. E. Page, 2008; L. Hong & Page, 2004; Eagle, Macy, & Claxton, 2010; Santos, Santos,
& Pacheco, 2008]. In most cases, these studies focus on diversity at the individual level —
to what extent do agents in a population differ from one another, and what effect does this
variation have on system-level behavior or performance outcomes? However, in the context of
this framework, I will interpret the term diversity inclusively, to refer to any form of variation
(or difference) at any level. Thus construed, diversity is a broad but powerful theme, and
methods of quantifying diversity can by applied at each of the levels of analysis discussed in
this framework, resulting in a rich collection of behavioral measures. Depending on the level
of application, these measures can capture concepts of homogeneity versus heterogeneity,
similarity versus difference, constancy versus change, predictability versus unpredictability,
and sensitivity versus robustness. We will find below that diversity is not a general enough
concept to capture all behavioral measures that we might be interested in, but it does give

us considerable purchase as an organizing principle for this framework.
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3.1. Formalizing ABM Behavior

Before discussing various types of behavioral measures, it will be helpful to unpack what
is meant by ABM behavior, and introduce some formal notation to increase the rigor of
the discussion that follows. An agent-based model is fully specified, in some sense?, by the
computer program which is to be executed, along with a conceptual correspondence (which
may be loose) between entities in the model and entities in the target phenomena being
modeled. However, it is only through running the agent-based model that we can discover
the model’s behavior - not through static inspection of the model’s source code. In the general
case, an agent-based model is a computer program written in a Turing-complete language,
and may implement algorithms of arbitrary complexity. Thus, from a theoretical perspective,
halting problem style arguments apply, proving that behavior cannot be determined without
running the code. From a more empirical perspective, individual agent rules are often fairly
simple algorithms, but the aggregate patterns resulting from them are quite complex, and
in practice even advanced modelers tend to have considerable difficulty predicting emergent
model behavior. While methods might be developed in the future that can characterize
model behavior without model execution, especially for limited subclasses of models, I am
not optimistic about this general approach. In any case, at present, model behavior is best
characterized by the output of executing the model (simulation).

In addition to the source code, an agent-based model has some associated set of input
parameters designated by the model author as variables of interest. We are specifically

interested in formalizing the following: what is the behavior of the model for a given choice

30mne might insist that to fully specify the model, one would also need a complete specification of the
interpreter/compiler for the language the model is written in, as well as the computer hardware which runs
it, etc. But this line of thought eventually leads to philosophical considerations which are beyond the scope
of this thesis...
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of parameters settings p in the space P of all possible parameter settings. A specific p
represents bindings (p1, p2, ps, -..) for each parameter of the model. As an illustrative example,
to make the formal notation we are building more accessible, let us consider the Wolf Sheep
Predation model [Wilensky, 1997¢], which is a fairly simple ABM of predator-prey dynamics
in a closed ecosystem. (Although this is an abstract model, it bears a striking resemblance
to real-world predator-prey relationships, such as those recorded between wolves and moose
that on the relatively closed ecosystem of Isle Royale, in Michigan, U.S.A. [Peterson, 1999].)
The model’s interface, including the model parameters exposed by the author, is shown in
Figure 3.2. In this case, p; would correspond to the show-energy? parameter, p, to the grass?
parameter, p3 to the grass-regrowth-rate parameter, p4 to the initial-number-sheep parameter,
and so on. (Actually, one of these parameters (show-energy?) only affects the visualization of
the model, and does not change the model behavior; although varying visualization options
can be crucial for humans to explore and understand model behavior, we will exclude such
parameters from consideration in the exploration and analysis process.)

Agent-based models almost always contain stochastic elements (if only in the initializa-
tion of agent properties, or in the randomized scheduling of agent behavior). Thus, when
executing a single simulation of the model, in addition to the parameter configuration p, we
must also specify a seed ¢ € Z for the pseudo-random number generator® that the simulation
will use as a source for randomness. An agent-based model can thus be viewed as a function

m : P X Z — B, where B is space of model behaviors for a single simulation of the model.

In practice, the RNG seeds must be selected from a large, but finite range, rather than from the set of all
integers. For example, in NetLogo, there are approximately 1.8 x 106 choices for a random seed. Since this
far exceeds the amount of behavioral sampling that one can afford to do, the finiteness of seed choices is
immaterial in practice.
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Grass settings
Sheep settings Wolf settings
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Figure 3.2. The interface of NetLogo’s Wolf Sheep Predation model [Wilensky,
1997e]. Model parameters are shown on the left, along with several model
outputs, such as the current number of sheep, wolves, and grass, and a plot
of these values over time. The model view on the right shows the spatial
locations of the mobile agents in this model, which are (unsurprisingly) wolves
and sheep, as well as the amount of grass present on each stationary patch

agent.

In other words, for any given parameter setting p € P, starting with random seed ¢ we will
obtain some model behavior b € B.

This conception is fairly straightforward, but it requires the full specification of B, which
is more complicated. Since agent-based models produce a vast quantity of data, we will
approach this from the bottom up. The state of a single agent a; at a single moment (¢) in
simulated model time may be specified by the set of agent-level variables (vy). In addition to

agents, agent-based models also consist of an environment e, and the state of the environment
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may be captured by some number of environmental variables®: ey, es, ..., €, ...,er. Thus
for a model, a complete state of world with J agents, may be specified by the ordered
tuple w = (eq, eg,...,€r, a1, az, ...,ay), where each a; is itself an ordered tuple of agent-level
variables (vy, v, ..., vx) where the number of variables K may vary between different types
of agents. Assuming simplest case where all agents have a uniform number of agent-level
variables, and where each variable is a scalar value that requires 3 bits of information to store
it, this description of the world requires F(JK + L) bits of information. In reality, agent-
level and environmental variables may sometimes be more complex data structures such as
lists, trees, or matrices, which may be dynamically resized over time. For instance, it is not
too uncommon for agents to accrue a list of information gathered from previous time steps,
which the agents may use when making decisions, as is the case in the El Farol model [Rand
& Wilensky, 2007; Rand & Sondahl, 2004], based on earlier work on boundedly rational
agents [D. Fogel, Chellapilla, & Angeline, 1999; Arthur, 1994]|. The previous expression was
to describe the world at a given time ¢. However, to describe the behavior of an agent-
based model, it is usually insufficient to consider only the state of the model at the end
of the simulation, or any other static snapshot of model state. The behavior of an agent-
based model unfolds over time, and thus we must consider the state of the world (w) at
each time t. We can fully characterize the model behavior for a single simulation as b =
(wo, w1, Wy, ..., Wy, ..., wr), where T is the maximum number of steps the simulation is run.
However, as we mentioned above, agent-based models tend to have stochastic elements,
meaning that the way the simulation unfolds will depend on the random seed ¢. Since it is

impossible to run the model for all values of ¢ € Z, in practice we choose a finite subset of

Tn NetLogo, these would correspond to “observer” /“global” variables. NetLogo’s patches, although often
used to model the spatial environment, are in fact agents themselves, and their state is captured in the list
of agents a;.
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Figure 3.3. Diagram illustrating the state information required to capture the
behavior of an agent based model for a given set of parameter settings.

distinct random seeds ® C Z, with |®| large enough that one an obtain a reasonable estimate
of the distribution of single-run behaviors. In this text we will refer to |®| as either the
“number of sampling repetitions” or “number of replicate runs”. Thus, for a fixed parameter
configuration p, the behavior of the model is fully specified by the complete trajectory across
time for each of the agent-level variables of each agent, and their environment, for a repeated
set of model runs with varying random seeds. This characterization of ABM behavior is

illustrated in Figure 3.3. The total amount of memory required to capture this behavior is
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BI®|T(JI + L). As an illustrative example, let’s consider a reasonably simple ABM such as

the Wolf Sheep Predation model:

(1) There are several thousand “patch” agents representing square sections of ground
(on which grass may grow), and which each store two numeric values that change
over time.

(2) There are varying numbers of wolf and sheep agents (but let’s estimate an average
of 200) which each store four numeric values which change over time.

(3) There are no global variables which require tracking, thus L = 0, and (JI + L) is
roughly 6000

(4) a simulation run might go for just 1000 (7) ticks, and we might run as few as 30
(|®|) replicates with different random seeds.

(5) Each numeric value requires 64 (/) bits of memory.

In this case, the total amount of memory required to store the behavior of the model is
about 1.3G B, and that is just for a one set of parameter settings p. However, there’s a deeper
underlying problem here. Even if we had ample storage space to keep a full description of the
simulation behavior, it would be too detailed to be useful. As with Lewis Carrol’s fictitious
map that had “the scale of a mile to the mile” (and Jorge Luis Borges’ elaboration on this
theme in the short story On Ezactitude in Science), our characterization of the behavior
of a model by recording the complete state space of the model is less than enlightening.
Like a good map (or a good model®), a good measure of model behavior must strip away
(or condense) almost all of the detail, so that only a concise characterization of behavior

remains, which is focused on the type of patterns that the modeler (or analyst) is interested in

6Rosenblueth & Wiener [1945] provide additional discussion about the appropriateness of detail level in
scientific models.
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investigating. However, the complete characterization of behavior is still important, because
it forms the starting point for developing more concise (and also more useful) measures. From
a theoretical perspective, all other measures of model behavior may be defined as functions
that reduce or compress the complete state information described above. In practice, the
data is filtered and condensed concurrently while the simulation runs, avoiding the collection
and storage of large amounts of unnecessary data.

In order to apply the QBME methodology using evolutionary algorithms (or other meta-
heuristic search), we require a behavioral measure that yields a single numeric value’, and
that value should quantify how well the model does (or does not) exhibit the behavior we
are interested in exploring, for a given parameter settings. Formally, we must construct
a fitness function f : P — R, where f(p) expresses the extent to which parameter set-
tings p cause the model to exhibit a specific behavior bx € B. This function may be
decomposed into two stages: f(p) = fo(fi(p)). The first stage is f; : P — Bl®l which
is obtained by running the model with various parameter settings and random seeds —
filp) = (m(p, ¢1), m(p, #2), ..., m(p, da))). The second stage requires condensing this vast
amount of data into a single number: f, : B®l — R. This second stage function may itself,
be the composition of a variety of smaller “ingredient” functions, which are behavioral mea-
sures that collapse or condense data across various dimensions or aspects of the behavioral

space. These ingredient measures are the topic of the following section, Section 3.2.

"This is not strictly true. While this thesis focuses on the use of single objective functions, it is both possible
and desirable to extend the QBME framework to multi-objective search, wherein the search algorithm
attempts to maximize/minimize multiple objective functions simultaneously.
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3.2. Formulating Measures

3.2.1. Intra-Agent Measures

As noted above, individual agents within a multi-agent model each have a collection of
properties, or agent-level variables. In the NetLogo language, there is a combination of built-
in variables along with user-specified agent-owned variables (see Figure 3.4 for an example
of agent-level variables for a single sheep in the NetLogo’s Wolf Sheep Predation model
[Wilensky, 1997¢]).

While it is possible to create a measure using any conceivable function of these variables,
the most common measurement at this level is just to extract the value of a single agent
property: e.g., an agent’s energy level of that sheep. Short arithmetic expressions (sums,
products, differences, and ratios) of agent properties can also useful, such as the product
of an agent’s mass and its velocity in a physics-based simulation. In this example, the
resulting measure would represent the momentum of the agent — a quantity which is not
directly stored for any agent, but can be easily computed from a combination of two other
agent-level properties.

Although measurements of diversity and similarity are less suited to the individual level
of analysis than they are to the upper levels (as we will discuss below), they can still arise
and be useful in certain contexts. For example, at a multi-agent modeling workshop that I
recently led, one of the participants was interested in modeling changes in people’s political
alignment and affiliation. In this case, each agent’s x-coordinate (xcor) would represent a
range between conservative and progressive on issue 1 (perhaps a social policy issue) while
the agent’s y-coordinate (ycor) would represent a range on the same scale for issue 2 (perhaps

a fiscal policy issue). Moreover, this scheme can be extended to any number of dimensions,
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Figure 3.4. An “agent-monitor” (or “inspector”) window in NetLogo provides
a listing of agent-level variables, along with the current values of each variable,
for a single sheep in NetLogo’s Wolf Sheep Predation model [Wilensky, 1997¢].
In this case, all but the last variable (energy) are default/built-in variables that
every mobile agent (“turtle”) in NetLogo possesses. The energy variable is an
additional user-defined variable specific to the Wolf Sheep Predation model.

wherein an agent would have K agent-level variables vy, ..., vy, ..., vg corresponding to
alignment with K different issues. In this case, measuring the homogeneity of v, values
within a single agent would provide a measure of political consistency and/or strict party
affiliation, whereas heterogeneous values might indicate more complex ideological affiliations,
or more independence in the subscription to political institutions. Intra-agent measures form

natural building blocks for creating multi-agent measures at the next level of complexity.
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Figure 3.5. A visualization from NetLogo’s Flocking model [Wilensky, 1998],
after the birds have self-organized into a number of disparate flocks.

3.2.2. Agent Group Measures

It is not uncommon for ABMs to contain several distinct types of agents (NetLogo uses
the concept of “breeds” for this purpose). An example of this would be a predator-prey
model, where predators and prey each belong to a distinct agent type (as depicted by the
wolf and sheep shapes in Figure 3.2). Even when there is only one type of agent, it may be
logical to divide the agents into groups based on some criteria (e.g., geographical location).
For example, in the Flocking model [Wilensky, 1998], birds self-organize into groups/flocks
(see Figure 3.5). When such groups exist, we may be interested in computing inter-agent
measures among the birds in each flock (in fact, a fleshed-out example of this appears in

the measurement of vee-shaped formations in Chapter 4), rather than treating all birds
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as belonging to the same population. In fact, recent research [Levy & Wilensky, 2008a]
suggests that the identification of smaller group-level structures (between the individual and
aggregate level) may be important for understanding, and thus analyzing, emergent behavior
in complex systems. In many cases, though, the whole population of agents in the model is
simply considered as a single group.

In each of these cases, it is useful to characterize behavior at the group level. In terms
of the the QBME framework, this moves the discussion up one level of analysis, and accord-
ingly it becomes possible to design measures for different aspects of model behavior than
were possible at the single-agent level. Perhaps the simplest group level measure is a count
of the number of elements (agents) in the group. This group-based measure requires no
information about the agents it is composed of, beyond their mere existence, and thus it
essentially ignores the lower agent-level properties. However, many richer group level be-
havioral measures can be constructed by combining single-agent measures in a variety of
ways. One straightforward measure is the “mean” value of some single agent-measure, taken
across the group. Depending on context, alternative forms of averaging (median, mode) are
also useful, as well as extracting extrema from the group (minimum/maximum value). While
there is no limit on the complexity of functions that could be employed to reduce a collection
of individual values to a single group value, much leverage can be gained from appealing to
the organizing principal of diversity. Measures of diversity (such as the standard-deviation of
agent-level measures) are surprisingly useful for characterizing group-level phenomena. For
instance, a group of agents with diverse set of x and y coordinates is more loosely clustered,
while a group of agents with homogeneous coordinates is tightly clustered. In an economics
model, measuring variations between the amount of money held by the constituent agents

in a population provides important information about how wealth is distributed. There are
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also some more specific measures of diversity of wealth (or wealth inequity), such as the Gini
coefficient [Gini, 1912], which will reappear in Chapter 5 in the context of measuring the
inequity of the degree distribution in networks. Beyond measuring the standard-deviation of
the distribution, there are a number of other measures of statistical dispersion, including the
variance, range, interquartile range, mean difference, median absolute deviation, and coeffi-
cient of variation. Higher order moments about the mean, such as skewness, are potentially
useful for measuring the shape of diverse distributions.

Note that in most cases, we consider agent groups to consist of an unordered set of agents,
and thus most agent measures are functions of the distribution of agent-level measures among
members of the set. However, less frequently, the agents within the group may have a natural
ordering (e.g., by the age/longevity of the agent, or by position, or by any agent-level measure
of arbitrary complexity), which agent group measures may need to take into account. As
an example, an agent-group measure in a simulated economic marketplace could look at the
correlation between company age and company size, rather than looking at either variable
in isolation. We can view correlation between variables as an extension of the theme of
diversity — how are the agents’ variables similar or different with respect to one another?
However, not all behavioral measures fit neatly into the theme of diversity. For instance,
another simple agent group measure is to take just a single agent’s value from the group,
but choose that agent based on certain criteria: e.g., measure the wealth of the largest (or
smallest) company in the group. Such measures take this form: Choose an agent based on
agent-level measure A, and then report a different agent-level measure B, measured on that
agent. This method extends naturally into the more general agent-group measure: Filter the
agent group based on agent-level measure A, and then apply agent-group measure B to the

filtered subset. Finally, as mentioned above with example of groups of flocking birds within
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a model, it is possible to have groups of groups, in which case multiple layers of group-level
behavioral measures may be applied. Although in principal one could imagine applying
group-level measures recursively for many layers, in practice most agent-based models have

fewer than two levels of grouping.

3.2.3. Network-Based Measures

Along with the rise of complex systems science, there has been an increasing focus in the
field of network science [Amaral & Ottino, 2004; Barabasi, 2003; Watts, 2004; Newman,
Barabasi, & Watts, 2006; Newman, 2010]. Although network science has roots in both
mathematical graph theory (stemming from Euler’s famous solution to the Konigsberg bridge
problem [Euler, 1736], as well as later groundbreaking work by Erdés and Rényi [1959; 1960])
and social network analysis (from Moreno’s invention of “sociometry” [Moreno & Jennings,
1938] to later experimental and theoretical work [Milgram, 1967; Granovetter, 1973; Burt,
1995; Wasserman & Faust, 1994, this new (or revitalized) field has a stronger focus on the
widespread applicability of networks as a tool for improving understanding across a wide
range of disciplines and phenomena (protein-protein interactions, metabolic pathways, gene
regulatory networks, neural networks, air transportation, epidemics, scientific and artistic
collaborations, ecological food webs, the electrical power grid, the Internet, the world wide
web, etc.). (A full introduction to this active area of research is simply not possible in
the space available here, so interested readers are encouraged to follow up on the citations
provided above.) Agent-based modeling goes hand in hand with the rise of network science,
providing a tool that goes beyond static network analysis, and thus allowing modelers to
explore dynamic processes on and in networks at both the individual and aggregate levels.

The ABM approach also holds promise for gaining insight into not just the patterns, but also
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Figure 3.6. A visualization from NetLogo’s Preferential Attachment model
[Wilensky, 2005], which demonstrates how the power of positive feedback (a
“rich get richer” situation) can create power law degree distributions in natural
and engineered networks. For scale-free networks, one important measure of
the degree distribution is the scaling exponent which describes the power law.
For general networks, a measure of how skewed the degree distribution is may
help in understanding the network structure.

the “mechanisms” by which networks form and evolve. See Figure 3.6 for a visualization
of the NetLogo Preferential Attachment model [Wilensky, 2005, which demonstrates the
mechanism Barabasi and Albert [1999] proposed for generating scale-free networks.

In the context of this chapter, the crucial point is that there are many agent-based
models where it is insufficient to a characterize agents as simply belong to one group or
another (i.e., sorting the agents into different bags, and looking at properties of those bags).

Rather, important aspects of model behavior may rest on the connections (links) between
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agents, and how these connections are structured in relation to one another. This is precisely
what a network perspective provides; the network level of analysis exists above the individual
level but below the group level®.

One difference between group-level and network-level measures, is that whereas most
group-level measures (apart from group size/count) tend to be condensing/consolidating
some individual-level measure, there are a variety of interesting network-level measures that
do not depend on properties of the agents (nodes”) Network-based measures can mostly be
divided into two types: those are descriptive of a single node, and those that are descriptive
of the network as a whole. The former range from simple measures, such as a node’s degree
(number of links to neighboring nodes), to more complicated measures of a node’s position
in the whole network, such as a node’s betweenness centrality (related to the number of
shortest paths from all other nodes that would travel through this node). When network-
based measures are applied at the individual level, then some form of group level measure
is required to aggregate the results. For instance, one might measure the average degree, or
the maximum betweenness centrality, among the nodes in the network. In the latter case,
the network level measure may apply to the network as a whole. This too can range from
simple measures, such as the number of links in the network or the number of connected
components, to more complicated measures such as the network diameter (the length of
the longest shortest path between any two nodes), chromatic number of the network (how

few colors can be used to color the graph such that no neighboring nodes share the same

8While it is possible for each node in a network to represent a group of agents, in this case we would probably
shift our perspective to consider each network node an individual agent (serving as a proxy for a group).
90ne unfortunate byproduct of network science’s interdisciplinary roots is that the nomenclature is not
standardized. In graph theory, a graph is composed of vertices and edges. In social science, social networks
tend to be composed of actors and ties. In parts of computer science, they are nodes and links, which are
the terms I will generally use.
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color), or the number of motifs (small characteristic network structures like triads) which are
subnetworks of the network. As a third use of networks, one may use network-based measures
to assign agent to different groups, at which point group level measures can be applied. In
particular, there has been much interest in recent years in determining community structure
for a given network, and various algorithms have been suggested (e.g., [Newman, 2006]) for
partitioning the network into disjoint sets, based on the relative link density within and
between sets.

This cursory discussion above barely scratches the surface. Networks can be directed or
undirected, and weighted or unweighted, simple or non-simple. There are whole areas of
algebraic graph theory and dynamical systems devoted to mathematical analysis of graphs
and of Markov processes taking place on graphs. Hypergraphs (which connect more than
two nodes together with one link) also exist, though they are not commonly used in complex
systems and agent-based modeling research at present. However, to avoid leading this dis-
cussion too far afield, readers are referred to other readily available sources, such as Newman
[2006; 2003; 2010], for more detailed discussion about a variety of network properties and
network-based measures. Network-based measured will also reappear in Chapters 5 and 7, al-
though in these cases the measures are being applied within the context of the ABMs, rather
than as extrinsically-defined behavioral measures or fitness functions. The main point to
remember is that network-based measures provide important tools for quantifying the richly

structured information contained in the relationships between agents.

3.2.4. Temporal Measures

Time is a critical element of agent-based models. Unlike certain mathematical techniques

that solve for equilibrium solutions or attractor states as t — oo, ABMs model time in
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discrete units, and may reproduce patterns of behavior that unfold over time. It is a chal-
lenging, but necessary task, to quantify these temporal behavioral patterns. Time may be
viewed as a higher “level” in the same containment hierarchy as individuals and agents, in
the sense that each time period (or “tick” in NetLogo parlance) contains an agent group,
which in turn contain individual agents. In this view, the model history is composed of a
large number of disconnected snapshots of the model world, each capturing a (simulated)
moment frozen in time. Alternatively, it is more flexible to view time as a dimension that is
orthogonal to the previous concerns of agent and group measurement. In this way, temporal
measures can condense time across agent level, group level, or network level measures. As
a specific example, let us consider temporal averaging. In the Wolf Sheep Predation model,
each wolf has an energy property. We might want to measure the average mazimum energy
of the wolves or the maximum average energy of the wolves. In the first case, for each time
t we could compute the maximum energy of the wolves, and then take the average for all
values of ¢; this would tell us generally how energized the currently most vital wolf (which
would change over time) was. In the second case, we could first find the average energy
across the lifespan of each wolf, and then take the maximum of those values; this would
tell us the average energy value of a specific single wolf, which was the most energized over
the course of its life. Both of these measures take the average over time, and the maximum
across individual agents, but depending on which measure is applied first, the interpretation
is slightly different. There are, in fact two other interpretations of the English phrase “max-
imum average energy”, which could involve taking the average across wolves followed by the
maximum across time, or the maximum across time followed by the average across wolves.

However, the main point was that even when applying the same measures (maximum and
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average) at the same levels (group level and time level, respectively), the result can change
based on the order of application.

Returning to our theme of “diversity”, temporal variation (as measured by standard
deviation or variance of an agent or group-level measure over time) is indicative of volatility.
In Chapter 4 we will see an example of measuring the variation in flock heading (a group-
level measure) over time, to find flocks of birds that have unstable changing headings, rather
than converging to a common fixed heading.

Another important point is that unlike group-level measures, where we are condensing
a set of results, with temporal measures we are condensing an ordered sequence of data.
So while unordered measures such as averages, minimum, maximum, variance, etc, may
apply, these neglect important sequential structure. Applying our theme of diversity in a
temporally restricted manner, we create measures that examine the difference between the
state of the world at time ¢, and the state of the world at time ¢ + 1. In this case, we are
brushing up against ideas from calculus: differentials and approximating derivatives. In the
Wolf Sheep Predation model, measuring the change in the number of wolves or sheep in the
world (a group level measure) over time gives us the birth rates at each point in time. Since
applying the difference between each time step from 1 to T still leaves us with 7' — 1 data
points, we still need to apply a temporal measure that will collapse across time, such as an
average or maximum.

Often, we are only interested in the model behavior close to the end of the run, after
the model has had a chance to “settle down” from its early-behavior transient state into its
normal steady-state behavior. In general, there is no guarantee that model behavior will
ever “settle down”, or that steady-state behavior exists. However, it is still often preferable

to sample model behavior later on in model time, rather than near the beginning, when
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Figure 3.7. Plot of food remaining in each of the three original food source
piles, during a typical run of the NetLogo Ants model [Wilensky, 1997a]. The
much steeper slope in the decline of one of the three piles corresponds to the
presence of a pheremone-based ant trail to that pile, which causes the ants to
exploit that food source more quickly.

measures are likely to be overly influenced by random initial conditions. In both exploratory
examples in Chapter 4 and the benchmark examples in Chapter 9, there will be examples
where behavior is measured only over the last 100 ticks. Although time is an important
component of ABMs, there are also many circumstances in which model behavior can be
measured simply by taking a measurement of the state of the world at the final tick of the
simulation. This is useful if you're only interested in where the simulation ends up, and not
the path it took to get there. In this case, the temporal measure simply discards most of

the data from the run.

3.2.5. Ant food foraging example

Before moving to the next level of complexity, let’s unpack a more detailed example of a mea-

sure that ties together ideas from several of the areas described above. This example comes
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from the NetLogo Ants model [Wilensky, 1997a], where ant agents interact via pheromone
trails they drop in their environment while foraging for food. In the Ants model, there are 3
separate food sources located at varying distances from the colony entrance. Food is modeled
as a numeric property of the patch agents that comprise the environment — each patch may
store up to 2 units of food. Figure 3.7 shows a plot of the amount of food remaining in each of
the 3 food sources (piles). The sharp decline in one of the food piles over time indicates that
the ants have been harvesting that pile quickly relative to the others. In this Ants model,
one qualitative behavior of interest is the emergent formation of ant lines, which permit
much more efficient exploitation of food sources. As a proxy for this qualitative behavior,
we can examine create a quantitative measure of the rate of depletion for a specified food
source. To be fully specific, let’s suppose we are interested in whether an ant line exists to
the farthest away food source between 400 and 500 simulated ticks. The intra-agent measure
will simply be the food patch-level variable for each patch. The patches that make up each
food source will be considered separate groups, and the group-level measurement is a sum of
the food patch-level measure across the patches in each group. We will filter the group-level
results, so that only the food count for the source that is farthest away remains. At the
temporal level, we will take the positive difference of the group-level measure over time for
400 <t < 500 (though note that if we are only interested in ¢ < 500, it is unlikely that we
will continue to run the simulation longer, so the condition ¢ < 500 may be unnecessary).
The temporal measure is completed by taking either the maximum or the mean across these
time steps. Taking the maximum value would be helpful for detecting whether an ant line
ever existed between 400 and 500 ticks (although it could be thrown off if, despite the lack

of trail, quite a few ants happened to collect food from that pile at the same time), whereas
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taking the mean value would be more indicative of whether an ant line persisted for a large

portion of the time between 400 and 500 ticks.

3.2.6. Cross-Replicate Measures

As discussed above, it is necessary to run stochastic models multiple times with different
random seeds (replicate runs) in order to evaluate their behavior. The measures we have
built up so far (agent level, group level, network level, and temporal) each characterized
behavior for a single run. Moving up one more level of analysis, cross-replicate measures
combine/condense the results of the single-run measures. Since there is no particular order
to the random number generator seeds used for replicate runs, the results from multiple runs
form an unordered set of values. Quite commonly we are interested in the behavior of a
“typical run” of the model, or perhaps in the “average” or “characteristic” model behavior.
In many cases, taking the mean or median of the individual runs will serve this purpose.
However, for many models, the idea of a “typical run” turns out to be a myth, as model
results may vary widely, and the variation of runs can reveal something more important
about the model behavior than any single run would. Again, we appeal to the theme of
diversity - this time at the level of diversity among runs, rather than diversity among agents,
groups, or agent/group properties over time. As before, the standard deviation of the results
provides a rough (but useful) measure of diversity among the runs. A low standard deviation
suggests consistency and also predictability of results, whereas a high standard deviation
corresponds to less predictability. However, the large diversity of results can stem from a
number of possibilities. It could be the result of a process that is simply very noisy, and the
outcome is quite random; this is often not very interesting, although it is helpful to know how

noisy /random a model can be. On the other hand, the diversity of results may stem from
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a path-dependent process, where sensitivity to initial conditions can lead the model toward
two or more different attractors in the model’s state-space. This topic will be discussed in
more detail below in Section 3.3.2. In either case, the standard deviation will serve as an
indicator of diverse results, and the practitioner would be wise to examine the results closely
to determine the underlying cause of the variance. Additionally, more complex distributional
measures (such as statistical measures of bi-modality) might be developed and used to try
to identify specific cases of divergent results. Rather than looking for a typical run or for
diversity of results, in situations like model testing (discussed in Section 3.3.6) it can also
useful to simply search for extreme model behavior. In this case, taking either the minimum

or maximum of the set of replicate results is expedient.

3.2.7. Cross-Parameter Measures

Though cross-replicate measures are often a natural stopping place for measure-building, it is
possible to go up yet a further level, and create measures that compare the results of running
the model with different parameter settings. This type of measure operates on the output
of cross-replicate measures. There is one particular cross-parameter measure that is worth
mentioning: measuring the differential with respect to some parameter. The goal here is to
measure how much change in behavior (as quantified by some cross-replicate measure) will
result from a small change in the value of a model input parameter. More formally, given

a cross-replicate measure m(p) for parameter setting p = (p1,pe,...), the cross-parameter

m(p) —m(p — ud)
5

to the specific parameter being varied. As will be discussed below in Section 3.3.3, this

differential measure is , Where u is a unit basis vector of P, corresponding

measure can be useful for identifying phase transitions or critical thresholds in the model’s
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parameter space — places where small changes in a parameter can result in large changes in

model behavior.

3.2.8. Pattern-Based Measures

There is one more important genre of measure, which does not fit as neatly into hierarchy of
levels that we have been discussing, but can be applied at multiple levels. This is the genre
of “pattern-based” measures, which compare simulation data to patterns or data that is
from some external source (i.e., a source extrinsic to the model). In keeping with the theme
of diversity, these measures are quantifying the sameness or difference between a specified
reference pattern (generally obtained or derived from empirical or real-world data) and the
results of the simulation. The relevant question that these measures often seek to answer is:
how can one quantify the difference between the reference patterns and the model’s behavior?
Answering this question is important for both model calibration and sensitivity analysis, as
discussed below in Sections 3.3.4 and 3.3.5.

Pattern-based measures can be applied at all of the level of analysis we have discussed so
far. At the individual level, one can compare whether individual agents match the properties
of the object they are representing in the model’s target phenomena. For instance, in a model
of evolutionary biology, one might compare the percentage of so-called “junk DNA” with the
amount empirically measured in the wild. At the group level, the distribution of agent-level
measures can be compared against an empirical distribution — e.g., how closely does the
simulated distribution of longevity of a species match the observed distribution? It’s also
possible to look for spatial patterns formed by the group —e.g., in Chapter 4 we measure how
closely a group of birds matches a “vee” or “eschelon” formation, such as those exhibited by

Canada geese (and certain other species of large birds). At the network level, all kinds of
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network measures can be compared against those extracted from real-world networks — e.g.,
in a model of the growth of online social media networks, how does the average clustering
coefficient of the simulated network compare with the clustering coefficient of Twitter? At
the temporal level, simulated time series data can be compared with data from longitudinal
studies or historical records; more detailed examples of this are discussed in Chapters 6
and 9. At the cross-replicate level, distributions of model results can be compared with
distributions of real-world experimental results — e.g., in a model of airplane boarding, the
length of time taken to board the craft will vary (both in the real world and in the model),
and these distributions of boarding times can be compared. Similarly, at the cross-parameter
level, changes in model results resulting from changes in parameters may be compared to
results from experiments where parameters were varied. Of course, pattern-based measures
can also be used to compare model results with patterns that have not (or have not yet) been
found in the target phenomena. Searching for unrealistic or exotic patterns may sometimes
be useful in exploring the range of possible model behaviors, as mentioned in Section 3.3.6

below.

3.2.9. More complicated measure combinations

It is worth mentioning that one may combine the various measures above in many and var-
ious ways, in particular with respect to our theme of diversity and change. We may also
measure the change (over time) of the uniformity/diversity of a group of agents over time.
Or, we might measure the reverse: that is, the uniformity /diversity *of* the change. Beyond
measuring the change of some measure, we may look at the change in the change of some
measure (i.e., the second derivative). Or rather than looking directly at the pattern-based

measure discussed in the previous section, we might look at measures of the change in the
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pattern-based measure - either over time, or across different parameter settings. And again,
instead of looking at the change in the pattern, we might look for the pattern of the change.
For example, in the NetLogo Fireflies model [Wilensky, 1997b], fireflies are repeatedly chang-
ing state (going from lit to dark, or dark to lit), and then changing number of lit fireflies
over time can be plotted. Within this time series, we can seek patterns of change, pos-
sibly using tools from signal processing, including autocorrelation, spectral decomposition,
Fourier/wavelet analysis, etc. These combinations are not intended to be an exhaustive list,
but merely demonstrate some of the rich possibilities for using diversity /change as a theme
for constructing more complicated measures from the simpler measures discussed above.
However, often simple measures work quite well for driving the model exploration process,
and more complicated measures should only be used when the target model behavior is

sufficiently complicated to merit them.

3.3. Application of Measures to Model Analysis Tasks

Now that we have discussed the various ingredients and building blocks for developing
measure to characterize and quantify behavior in ABMs;, let us turn our attention to the
import question of how these measures can be applied to important modeling analysis tasks.
This portion of the QBME framework builds on the earlier ANT (Active Nonlinear Testing)
framework proposed by Miller [1998], with appropriate expansions for the context of agent-
based modeling (as opposed to the equation-based system dynamics context, where ANT

was originally introduced).
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3.3.1. General exploration

Before moving on to various specific model analysis tasks/applications, I would like to make
a case for general exploration. That is, rather than having a concrete task/goal in mind, it is
useful for modelers to simply to plumb the depths of what is possible in a model’s behavior.
Modelers commonly explore model behavior in their own ways - twiddling the parameters
of the model, trying different combinations, running the model multiple times and looking
at what happens. Modelers might describe this activity simply as “tinkering”, “playing
with the model”, or “getting a feel for things”. This informal tinkering process is a natural
(and I would argue necessary) part of both model development and model understanding.
Through tinkering, modelers are probing the system to learn something about it. It is an
iterative process of developing small hypotheses (or perhaps merely “hunches”) about model
behavior, and testing them. I would like to argue for augmenting this tinkering activity
with additional QBME-enhanced tinkering. The QBME framework provides tools to get
a feel for model behavior from the opposite direction of standard tinkering. In standard
tinkering, each time someone runs the model with certain parameter settings, they are trying
to answer the question “what model behavior do these parameter settings produce?” The
QBME framework allows one to formulate inverse questions of the form: “what parameter
settings will produce this kind of model behavior?” Admittedly, because the QBME approach
requires the use of a GA (or other search algorithm) that must run the model a large number
of times with different parameter settings, this new approach to tinkering does not provide
as short of an interactive feedback loop for exploring the model as standard tinkering. I have

three responses to that:
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(1) the power to answer inverse style questions about model behavior makes it worth
the wait.

(2) the approaches are complementary - while waiting for the results of a QBME query,
one can continue to tinker with the model in the old-fashioned way, and the two
tinkering methods will mutually inform exploration directions for the other.

(3) the development of new software tools (e.g., see Chapter 10) along with the rise of
massively parallel cluster/grid/cloud computing platforms will continue to shorten

the time and effort required to issue QBME queries and receive results.

One may make the additional objection that it can be difficult for modelers to create behav-

ioral measures to search for. To this objection, I have four responses:

(1) Modelers are already creating a variety of numeric measures of model behavior,
for the purposes of analysis and visualization. Many (though not all'®) of these
measures will be suitable for driving an exploratory search process.

(2) While certain behaviors can be very challenging to quantify, there are many other in-
teresting measures of a model’s behavior that are very straightforward to formulate,
and can still provide new insight into model dynamics.

(3) My hope is that the creation of frameworks (such as QBME) will provide modelers
with the grounding they require to start constructing useful measures for query-
based exploration.

(4) Like many other skills needed for good modeling, some practice will be needed to
gain fluency using QBME methodology. I believe that the learning overhead will be

well worth the gain.

0Besides being a good measure of the target behavior, a measure must also satisfy additional criteria in
order to promote efficient exploration of the search space. This will be explained further in Section 3.4.2.
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Using ABMs of collective animal motion as a case study, Chapter 4 will provide several
examples of using QBME for general exploration purposes, to discover interesting behavior

that can be elicited from the model, and the parameter settings which lead to that behavior.

3.3.2. Path dependence, multiple attractors, and state space analysis

In Section 3.2.6 above, we mentioned that the diversity of results from different replicate
model runs can stem from a path dependent process [Brown et al., 2005; Arthur, 1998],
where sensitivity to initial conditions can lead the model toward two or more different at-
tractors in the model’s state-space. Thus, we can use measures of variance among runs as a
mechanism for detecting path dependent behavior: situations where the model can arrive at
qualitatively different outcomes depending on chance events and random initial conditions.
Sometimes places in the model’s parameter space with multiple attractors are indicative of
a phase transition occurring in one (or more) of the model’s parameters. This general ap-
proach to phase transition identification was taken by Brueckner and Parunak [2003] in their
multi-agent parameter exploration method. Although it is a good indicator, the presence
of multiple attractors does not always indicate a phase transition, and we will discuss an
alternative approach to phase transition identification in Section 3.3.3 below.

As a concrete example, two potential attractors in the Wolf Sheep Predation model are
“complete extinction” and “sheep inherit the earth”™ [Wilensky & Reisman, 2006]. In the
“complete extinction” case, the sheep die out first, causing all the wolves to perish. In the
“sheep inherit the earth” case, the wolves die out first, leaving the sheep to multiply endlessly

(assuming there is no constraint on the sheep’s supply of grass). Consider a measure of the

Hhere are other attractor states of the system, such as where the wolf and sheep populations oscillate
in a stable cyclic pattern, but these two extreme attractors best illustrate the point I wish to make about
variance of results.
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number of sheep after 400 ticks. With the model’s default parameter settings (which starts
with just 100 initial sheep), running the model 10 times produces these 10 values: 0 0 0
0 5148 14924 21310 32215 71078 78892. The four Os represent the “complete extinction”
attractor, while the other values likely represent the “sheep inherit the earth” attractor (at
various stages of the sheep population’s exponential climb toward exhausting the computer’s

available RAM).

3.3.3. Phase transitions, critical thresholds, and leverage points

In Section 3.2.7 above, we mentioned the usefulness of cross-parameter measures for locating
phase transitions in the model’s parameter space. To elaborate on this theme, let us consider
a specific example, the NetLogo Fire model [Wilensky, 1997¢c|, which is an extremely simple
model of a forest fire (or possibly any other phenomena modeled by percolation across a
square lattice). This model has one parameter density, which controls the initial density of
trees in the lattice. Since the fire spreads only from tree to neighboring tree, it is easy to
predict that the forest fire will die out quickly on a nearly empty lattice, whereas it will burn
every inch of the forest if the lattice is completely full. However, we might be interested
in how much the outcome is effected by small changes in the tree density. Thus, we could
construct a measure of the change in average amount of forest burned at density D and at
density D — 1. If we were to search for the maximum absolute value of this measure, we
would find a striking phase transition that occurs right around a tree density of 60%, as
shown in Figure 3.8.

Scientists may have an intrinsic interest in discovering phase transitions in the model’s
parameter space, simply for better understanding the modeled phenomena. However, in

some modeling contexts, the discovery of these phase transitions can also be very important
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Figure 3.8. Plot showing the amount of forest burned in the NetLogo Fire
model [Wilensky, 1997¢] as a function of forest density. This plot also shows
the relationship between the derivative (as approximated with a unit change
in density) and the location of the phase transition around 60% density.

for policy-makers. In some ABMs, model parameters correspond to real-world levers that
policy-makers have the power to manipulate, and in these situations phase transitions may
represent “leverage points”, where a small amount of effort (or money) could go a long way

toward effecting change.
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3.3.4. Calibration

In Section 3.2.8 above, we discussed how pattern-based measures could be used to compare
model results with a reference pattern which we might like the model to match. Calibra-
tion is the process of changing a model or manipulating its input parameters such that it
more closely matches a desired output, or reference pattern, which is often derived from
empirical /real-world sources, although it could also be the output of a different model. For
the purposes of this thesis, we will restrict ourselves to the form of calibration where only
the model parameters are being varied and the model’s code remains unchanged. Using
the QBME framework, to calibrate a model we require an error measure (or alternatively a
similarity measure) which compares the model output to the reference pattern. Then genetic
algorithms (or other meta-heuristic search algorithms) can be used to find parameters that
minimize the error measure (or maximize the similarity measure).

For instance, one might compare the population dynamics of the species in the Wolf
Sheep predation model with historical population dynamics in a closed ecosystem being
studied by population biologists (as we will do for one of the benchmark tasks in Chapter
9. In this particular case, the reference pattern is a list/vector of numbers corresponding to
the historical population values, and the similarity measure uses the correlation coefficients
between the real and simulated datasets.

Another example of calibration is explored in Chapter 4, when searching for parameter
that cause vee-shaped bird formations. In this case, rather attempting to match specific
numeric values, the similarity measure judges how close a formation is to a perfect vee for a

range of vee angles obtained from the observation of Canada geese in the wild.
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The calibration process is another area where diversity plays an important role: namely,
the diversity of results obtained from comparing multiple simulation runs against the em-
pirical data. Variance in these results highlights a trade-off between how closely and how
often the simulation agrees with the reference pattern, an issue that will be discussed in the
context of a real calibration problem (the well-known Artificial Ansazi model) in Chapter
6. Because calibration is a particularly common and important task for modelers, this topic

receives more extensive treatment in the case studies given in both Chapters 6 and 7.

3.3.5. Sensitivity Analysis

Whereas calibration is the process of seeing how well a model is able to match its target, under
certain conditions, sensitivity analysis is concerned with how sensitive the model’s results
are to changes in its rules, assumptions, or parameters. Again, in the present document,
we will restrict ourselves to studying sensitivity analysis with respect to changes in model
parameters. Sensitivity analysis is an extremely important (yet sadly often neglected) aspect
of agent-based modeling because it provides a basis to evaluate the robustness or fragility
of the model. Conclusions drawn from models that are fragile (highly sensitive to specific
parameter settings) are not as trustworthy than those drawn from robust models.

Like calibration, sensitivity analysis also relies on some error measure to measure how far
off the model result is from the desired reference pattern. As a result, to perform sensitivity
analysis in the QBME framework, we may simply search for parameters (within the range
that we would like to see that the model is robust) that maximize this error measure, rather
than minimize it. If the search is able to find parameter settings that yield a large error

measure, this indicates fragility, and also provides information about which parameters the
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model is most sensitive to. Sensitivity analysis will be discussed in greater detail in the

Artificial Anasazi case study in Chapter 6.

3.3.6. Model Testing

Another essential task in the ABM development process is model verification, which is the
process of determining whether the ABM is a correct implementation of the model author’s
conceptual model [Wilensky & Rand, 2007, in press; G. Gilbert, 2008]. More informally,
it is checking whether the rules of the model really are what you think they are. Model
testing is a form of software testing that can aid in the verification process. Model testing
may involve either static analysis of the model’s code, or dynamic testing during model
simulation. Within the latter category, there are a variety of approaches (such as unit
testing, which checks whether individual subcomponents of the model are working correctly),
or checking model invariants (e.g., that the total amount of money/energy in the simulated
economy /chemical reaction should always remain constant). In many cases, these approaches
rely on testing the model with numerous random parameters (or perhaps focused on the
boundaries of valid parameter ranges) and checking that certain conditions have not been
violated. These are all good approaches to model testing, and should be considered as useful
tools in the model verification process, along with non-automated human-based efforts such
as code reviews, or model replication attempts [Wilensky & Rand, 2007].

However, building on previous work in using evolutionary algorithms for software/model
testing [Miller, 1998; Wakeland et al., 2005, the QBME framework suggests another ap-
proach to complement these techniques. Because ABMs have stochastic elements, expecting
the model to produce an exact result is often too strict a criterion. However, model authors

should be able to offer definite ideas about what range of results the model should be able
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to produce (either based on their modeling assumptions or based on analogy to the target
phenomena being modeled) . For instance, model authors might believe that the number of
wolves in their modeled world will never exceed 1000. A traditional model-checking approach
might run the model thousands of times with different random parameter settings, and check
if the number of wolves ever exceeds 1000. The QBME approach is similar, but differs in
one key aspect. We construct a measure of the maximum number of wolves at any time
step, and take the maximum value of that measure across replicate model runs, and then
use a GA to search for parameters that maximize this measure. The advantage here is that
while random sampling of the space may be extremely unlikely to find parameter settings
that result in unreasonably large wolf populations, using the maximum number of wolves as
a fitness function may efficiently drive the genetic algorithm toward high-wolf parameters.
Model testing can also be a beneficial side product of other forms of QBME exploration —
for instance, while performing sensitivity analysis in Chapter 6, we discovered a bug in the
published Artificial Anasazi model, due to a discrepancy between our intuitions about which
model parameters the GA had identified that the model was sensitive to. We also examine

one case of explicit model testing in the benchmarks in Chapter 9.

3.4. Applying Measures in Search-Based Exploration

3.4.1. Genetic Algorithms Overview

Before discussing the interaction between behavioral measures and the search algorithms
that use them to drive the exploration process, a brief review of genetic algorithms (GAs) in
this context may prove helpful. The genetic algorithm starts with a population of individ-

uals. However, when we say “individuals” here we are not talking about individual agents
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within the ABM, but rather each individual corresponds to one configuration of the param-
eter settings for the ABM. The initial population (generation 0) is composed of individuals
that represent randomly chosen parameter settings in the space of possible parameter set-
tings being searched. The following steps are repeated. First, the “fitness” of each individual
in the population is evaluated according to the behavioral “objective function” (or “fitness
function” in genetic algorithms parlance). As mentioned in the sections above on designing
behavioral measures, evaluating the fitness function tends to require running the agent-based
simulation multiple times with the parameter settings represented by the individual, and it
results in assigning the individual a numeric fitness score. Then certain individuals from the
current generation are selected for “reproduction”. There are various mechanisms (roulette
selection, tournament selection, rank-selection, etc.) for selecting these individuals, but they
all have the common trait that individuals that have better fitness are more likely to be
selected, but that there is some random element to the selection process, so that less fit
individuals do have some chance of passing on their genetic material as well. A selected
individual (parent) may either undergo sexual reproduction with another parent (using the
crossover /recombination operator) to produce two children, or simply undergo asexual re-
production (cloning) to produce a single child. Crossover may be as simple as inheriting
certain parameter settings from one parent, and the rest from the other (although it can be
slightly more complicated if parameter settings are encoded using lower-level representations
such as binary strings). The same individual may be selected as a parent multiple times,
and there are no constraints such as monogamous partnerships, etc. The mutation operator
is applied to all the “children”, though the mutation operator works probabilistically such

that mutations may occur (multiple times) in some children and not at all in others. Thus,
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some children may end up being identical copies of their parents, while others may be combi-
nations of multiple parents, and some may have been altered in random ways. The number
of children created in this manner is equal to the original population size, and it is these
children that form the “next generation” of the genetic algorithm'? The fitness of each child
must now be evaluated, and these children will have children, and the cycle will continue.
The cycle may stop either when some target fitness level has been reached (corresponding
to a configuration of parameter settings that sufficiently elicits the desired behavioral pat-
tern), or when some specified number of generations (or model evaluations) has passed. This

process is illustrated in Figure 3.9.

3.4.2. Behavioral measures as fitness functions

Not all behavioral measures are created equal, and this is especially true for the purposes
of driving evolutionary search processes. In the context of the Wolf Sheep Predation model,
let us suppose that we would like to search for parameters that lead to the extinction of
the wolf population. Let us consider two different behavioral measures to serve as fitness
functions for this exploration task. We define measure f4 to be the number of wolves after
some specified number of ticks (T'), and ask the search algorithm to find parameters that
minimize this function. We define measure fp to be 0 (extinct) if there are no wolves left, or
1 (alive) if there are any wolves remaining at time 7', and ask the search algorithm to find
parameters that give us a result of 0. Both of these measures quantify the “wolf extinction”
behavior for us. Furthermore, one could argue that measure fg marks the extinction criteria

more clearly /precisely than f4. However, in the QBME context, fp is a poor choice, and

12This describes the classic generational population replacement strategy, but there are other variants. e.g.,
In a steady-state GA, only a single individual in the population is replaced at a time.
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fa is by far the more appropriate measure to use. Why is this? The fitness function must

not only identify the desired behavior we are searching for, but it must also help to guide

the search process toward its goal. In the case of f,4, the algorithm would have little choice

but to keep choosing new parameters randomly until it happened to find a setting which

caused the wolf population to reach exactly 0; this is akin to looking for a needle in the

proverbial haystack. Measure fg on the other hand, provides additional feedback to the

search algorithm; a relatively low number of wolves suggests a more promising region of

the search space to investigate, whereas parameters that yield an extremely high number of



116

wolves suggest a region to avoid. The fitness function needs to provide a “search gradient”,
which assists the search algorithm in moving toward local (or potentially global) optima in
the search space. A good fitness function provides a measure of how close a set of parameters
is to achieving the target behavior (in this case, extinction). One must choose a measure
that both provides a wide range of values (so it can serve to usefully discriminate between
the goodness of different parameter settings) while at the same time is strongly correlated
with the actual behavior which one is trying to elicit. Specifically, for the f, (“small final
population is better”) fitness function to be useful for improving the efficiency of the search
for extinction, it must be the case that small-population-outcome parameter settings are
more likely to be near (in the parameter space) to extinction-outcome parameter settings
than large-population-outcome parameter settings are. This seems intuitive, and in fact an
examination of a small subspace of the fitness landscapes for these two measures (shown in
Figure 3.10 confirms that this is so.

As an additional point about these measures, in order to capture the behavior of “even-
tually the wolves go extinct”, one would wish to choose the time limit 7" large enough to
be confident that the wolf population has stabilized and will continue to thrive or will have
gone extinct before that time. However, there are (at least theoretically) conditions where
even after millions of time steps of stable population dynamics, a series of chance events
could cause the wolves to go extinct. And choose T relatively small, but sufficiently large
enough that one posits that the wolves might go extinct under some conditions. One might
also wish to search for parameters which cause the wolves to go extinct only after a certain
amount of time T};,,;; has passed. More subtle behaviors like this are more challenging to
quantify, but not insurmountable. In this case the fitness function must reward wolf survival

up to a certain time, but then reward extinction after that point. The primary difficulty
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here is that one must be careful not to let one reward measure outweigh (or conflict with)
the other. Minimizing the difference between the average population after Tip,csnoq and
the average population before Tij,esnoiq may not suffice. This could lead to behavior where
extremely large populations that decline and settle at a lower equilibrium, which may score
better on the objective function than situations where a small population eventually dies off.
When working with genetic algorithms, one learns fairly quickly that you often “get what
you search for.” But equally often you find that what you searched for wasn’t actually what
you were trying to find.

It turns out we can avoid the problem in this specific case by combining sub-measures for
two incommensurate quantities. One sub-measure (SM1) could be the number of steps until
wolf extinction, or 0 if the wolves never died out. If we find parameter settings that cause the
wolves to go extinct, this sub-measure should help drive the search toward parameters that
take longer to go extinct. However, this sub-measure provides no fitness gradient for finding
wolf extinction in the first place, so we would like to combine this with a measure similar to
fa above, which searches for minimal wolf population, and thus may help us find extinction.
But we must be careful not to search for minimal wolf population too soon in the run, or
this sub-measure will be in conflict with SM1. So for SM2 we should choose a time later
than T}presnoig to measure the wolf population. Notice that we wish to minimize SM2 while
we wish to maximize SM1. Thus, for our combined behavioral measure we should minimize
SM2— SM1 (or equivalently, maximize SM1— SM2). When combining sub-measures that
compare apples to oranges (or in this case time steps to population levels), it is often good
practice to normalize the values of these sub-measures to be between 0 and 1. Thus each
sub-measure will be given equal weight in the resulting measure. We can easily normalize

SM1 by dividing by T},4: (the maximum number of steps the model is run). Normalizing
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SM2 is not so simple, however, because we do not know how large the wolf population
could be at any point in time. Thus, based on prior experience with the model, we may
estimate a reasonable maximum population value for use in normalization. Fortunately,
perfect normalization is rarely necessary. In fact, in this particular case, because of mutual
exclusion in these two sub-measures, normalization of either measure was not necessary

(more elaborate justification of this is left as an exercise to the reader).

3.4.3. Outer levels: measures of the search process

There are several additional levels in which diversity and similarity play important roles
in the evolutionary search/exploration process. However, at this point the discussion has
moved beyond the level of specifying the single objective function for quantifying behavior
to be searched for. Thus, the following is no longer relevant to the creation of quantitative
measures, but instead focuses on how the organizing principle of diversity is important within

the search process itself, as well as in understanding and interpreting search results.

3.4.4. Diversity in the GA populations

As discussed above, in population-based search mechanisms, such as genetic algorithms, the
algorithm maintains a population, or pool of individuals. The population allows the genetic
algorithm to take a multi-pronged search strategy, exploring multiple directions in the search
space simultaneously. Thus, the diversity of individuals in the population is important to
the algorithms success. The mutation operator in particular contributes to the diversity
of the population, as higher mutation rates lead to more variation among individuals in
the population. Selective pressure is a force that counteracts diversity. Some individual

have better “fitness” than others, and are thus more likely to be selected for reproduction.
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The more biased the search algorithm is toward the reproduction of fitter individuals, the
greater the “selective pressure”. As a result certain individuals become overrepresented in
the population, and strong selective pressure can lead to the population to converge. The
crossover (or recombination) operator can actually contribute to both diversity and homo-
geneity within the search. Over short time periods, crossover can produce variation by
creating novel combinations of genes from individuals in the existing population. However,
over long time periods, even in the absence of selective pressure, repeated crossover without
mutation will eventually lead the population to converge. However, the population also im-
plicitly acts as a measure of how promising a certain area of the search space is; better areas
are more likely to be better represented within the population. Thus, the genetic search pro-
cess must maintain a balance between population diversity and selective pressure. Diversity
promotes broader exploration of the search space, by exploring more regions simultaneously,
even if they may appear relatively unpromising at first. Selection promotes exploitation of
the currently most promising regions of the search space, by concentrating population in
those regions and thus investigating those regions more thoroughly (and fine-tuning good
solutions into better ones). Beyond the standard mutation and crossover operators, some
have also proposed explicit mechanisms (such as niching [Mahfoud, 1995; D. E. Goldberg,
1989], Random Immigrants [Grefenstette, 1992b], Triggered Hypermutation [Cobb, 1990],
and others [Ursem, 2002; Muhlenbein, 1991]) to help maintain diversity in GA populations,
and thus prevent premature convergence on suboptimal solutions. Such techniques may
prove useful in the QBME context, but this thesis does not explore their use, which would
add an unnecessary level of complication to the basic process. However, incorporating ad-
ditional diversity maintenance mechanisms into the search process would be a relatively

straightforward modification that might provide modest gains in search efficiency.
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3.4.5. Variation within search results

Moving up yet another level, we can look at diversity in the results from performing multiples
searches. (In this section, we are only discussing multiple executions of the same search
algorithm, but with different random seeds / initial conditions — we will discuss the use of
multiple search algorithms in Section 3.4.6 below.) First of all, it is important to emphasize
that practitioners of the QBME framework should not be satisfied with running only a single
search for a desired target behavior. Multiple searches should always be performed. Even
though genetic algorithms are often lauded for their ability to escape local optima in the
search space, it is quite possible that for any particular search, the population may converge
prematurely and stagnate in a poor area of the space. Even if a single search finds parameters
that yield great performance on the behavioral measure, it’s possible that additional searches
will find substantively different parameters that have equally good performance, or perhaps
even parameters that are significantly better. Recall that our core mission is the exploration
of model behavior, and although we are using optimization techniques to do this, sometimes
much can be learned by looking at more than just the single most “optimal” parameter
settings discovered using this process. The diversity that may occur among search results

can be broken into several distinct cases.

Case 1: The parameter settings found by the searches vary from one another, and the asso-
ciated behavioral scores also vary considerably. This is a likely indicator that the
search process was not successful, particularly if the parameter settings are fairly
spread out in the search space, and behavioral scores are mostly poor. There are

many possible causes for a failed search, including: not enough time was allowed for
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the search, there was too much noise/uncertainty in the fitness function, the trade-
off between exploration and exploitation was too far imbalanced (e.g., too high a
mutation rate, too small a population size, too strong of selective pressure, etc). If
the parameters are not generally spread out, and instead form a few clusters, this
probably indicate several local optima in the search space, which the search process
was often trapped by. Although there is no general way to guarantee escape from
local optima, sometimes they can by avoided by increasing the emphasis on explo-
ration, to prevent premature convergence of the search algorithm’s population. On
the other hand, while classic optimization researchers view local optima as a bane
to be avoided, discovering the locations of local optima in the parameter-space of
an agent-based model may actually be useful /informative. Modelers may wish to
investigate why, in each local optima, did the combination of parameter settings
lead to a higher behavioral measure than the nearby parameter settings.

The parameter settings found by different searches can be different, but they all
yield similar scores on the behavioral measure. Similar to case (1) above, if there
is clustering of the parameter settings, this could indicate several local optima with
similar fitness levels. Also as above, modelers would wish to know about these
multiple optima, and explore the model behavior more thoroughly in each identified
region of the space. If the parameter settings are spread out, this may indicate
a large “plateau” in the fitness landscape. That is, rather than a single point in
the search space that yields high fitness, there could be a range of settings for the
parameters which each elicit the target behavior equally well. For instance, changes
in certain parameters may not impact the behavior. In this case, looking at the

distribution of search results can be helpful for identifying these “robust” regions of
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the parameter space, as well as identifying which model parameter the behavior is
more or less sensitive to.

Case 3: The parameter settings vary only a little, but the behavioral scores are substantially
different. This is not a particularly common scenario, but may stem from a number
of possibilities. A) It may indicate that in the “good” region of the parameter space
the fitness function is quite noisy, and running additional replicates of the model in
this region is necessary to get a more accurate estimation of the behavioral measure.
(It may also indicate that the method of averaging for the fitness function was poorly
chosen, with significant outliers affecting the measurement.) B) It may indicate that
the searches were consistently able to find the same “good” region of the parameter
space, but that in some cases the searches were unable to fine-tune their search
results to reach the even better fitness levels that some of the searches happened to
achieve. This could be symptomatic of too high a mutation rate, or other factors

that encourage exploration too highly, at the expense of exploitation/fine-tuning.

In each of these cases, it is helpful to examine the diversity among search results on
a parameter by parameter basis, as often the settings for certain parameters are relatively
invariant among the results, whereas others vary widely. This can aid in the identification of
which parameters are actually important for eliciting the target behavior, and other param-
eters which have negligible impact. In fact, it was this observation the diversity of settings
among different model parameters which led to the discovery of a bug in the published Ar-
tificial Anasazi model, as discussed in more detail in Chapter 6. Variation among search
results will arise in several of the case studies in following chapters, and the meaning of this

variation will be interpreted more specifically in those contexts.
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3.4.6. Variation resulting from multiple search methods

While running multiple repetitions of the same search algorithm is a good idea, for additional
confidence that a good solution has not been missed, it may be wise to try several different
search algorithms (or different parameterizations of the same search algorithm) when explor-
ing a model’s behavior. For a specific algorithm, search parameters (such as population size,
mutation-rate, crossover-rate, etc) can be varied. Within the family of genetic and evolution-
ary algorithms many variants exist, including varying choices for genetic operators, selection
methods, and population replacement mechanisms. One could also compare search results
with other (non-genetic) meta-heuristic search algorithms such as hill climbing, simulated
annealing, particle swarm optimization, Tabu search, or others.

Thus, moving up yet another level, let us consider the situation of observing different
results when employing different search methods. First of all, this could arise for the same
reasons as variation occurring among search results using the same method (described in
the previous subsection). However, if using search method A consistently finds results in a
certain region of the parameter-space, whereas search method B consistently finds results
in another region, when both search methods are using the same objective function, then
additional explanation is necessary. In this case, it could indicate biases among the search
methods.

For instance, using the same objective function but with fewer sampling replicates may
result in a noisier fitness signal, which could cause a search algorithm to prefer noisier regions
of the space (which can occasionally give very high fitness values, although the average fitness
behavior is poor. One could argue that this is a difference in objective function, rather than

search algorithm, but in fact a similar situation arises when one search method uses fitness
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caching, while another does not. This subject is discussed in much greater detail in Chapter
8, but essentially caching prevents additional re-sampling replications, which might give a
better approximation of the fitness in that region.

As a second example, consider two search algorithms that are identical except for the
mutation mechanism. Assume a real-valued genes, on an interval between 0.0 and 1.0,
and using additive Gaussian mutation. That is, a gene with current value of x will, after
mutation, assume a value of T, = = + N(0,0%) where N(0,0?) is a value drawn from a
normal distribution with mean 0 and variance o?. But what if 2,,.,, is less than 0.0 or greater

than 1.0 — this can happen regardless of the variance o2

, since the normally distributed
random variable can assume arbitrarily high or low values (albeit with small probability)?

Some fix is required, to constrain z,, in the desired range. Here are three possibilities:

(1) clipping: if Tpew < 0, st Tfizeq t0 0 (and if Tpe > 1 s€t Tfigeq to 1).

(2) mirroring: take whatever amount ., is out of range, and move it that far from
the boundary in the opposite direction. e.g., if @peyy, = —0.3, T izeq would be 0.3,
and if z,,e,, = 3.1, then xf;,eq would be 0.9 (after mirroring multiple times).

(3) rejection-based sampling: if ., is out of range, regenerate T,e, = x + N(0,0?)

until x,., is in range.

Note that the first of these has a fairly strong bias toward genes taking on the extrema
values of 0 and 1, whereas the other two methods do not. Although the word “bias” often
has negative connotations, in some cases this bias could indeed be beneficial for the search
process, since the extrema of a parameters range are commonly (though not always!) settings
that cause the most or least of a certain behavior to occur. However, the point is that search

mechanisms using different mutation operations may lead the search to sample certain areas
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of the parameter space more often than other areas, and this could lead to differing results
from different search mechanisms.

These were just two illustrative examples, but in fact the situation is more widespread.
It turns out that all search methods are in some way biased in their approach to sampling
the search space, with the exception of random search, which samples uniformly at random.
Again, the word “bias” must not be perceived as negative here — in fact, all intelligent search
techniques depend on these sampling biases, which take advantage of structure in the fitness
landscape in order to outperform random sampling of the space. Thus, there is always the
potential for two search methods to be lead down paths toward different regions of the search
space, and thus tend toward different results. In such cases, the region of the parameter space
that give superior fitness values is generally preferable, but the regions identified by other
search mechanisms may deserve examination as well. However, in practice, a large variety of
search techniques are likely converge to the same high-performing region of the search space,

if given enough time, and appropriate search parameters.

3.4.7. Variation of search results from differing specifications

There is one final method of exploration in the QBME framework that we haven’t touched
on yet. That is, by comparing the results from performing searches with varying specifi-
cations, we have the potential to learn many interesting things about the model, or about
differences between models. This approach can be broken down into three cases: search-
ing different parameter ranges, and searching different models, and searching for different
objective functions.

Searching different parameter space ranges. One approach is it to search for the same

objective function, but in different subspaces of the full parameter space. By constraining
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the search process to a certain range of parameters, one can discover the parameters within
that range that maximize the target model behavior. By changing to a different range of
parameters, and searching again, one can compare a) the parameter settings found, and
b) the extent to which the behavior was manifested in each region. This is probably best
illustrated by a couple of examples.

In the Wolf Sheep Predation model, a parameter called grass? determines whether the
grass (food source for the sheep) is limited in supply and regrows over time, or whether the
grass is assumed to be unlimited. Including grass growth/consumption in the model adds
another trophic level to the model’s food chain, and generally produces much more stable
population dynamics than in the purely two-species variant. However, one may wonder
whether there are choices for the other parameters of the model such that the inclusion of
grass would cause the population dynamics to be even less stable than in the other case
(perhaps using a measure of the frequency of wolf/sheep extinction). To examine this, the
parameter space may be split into two subspaces: one where the grass is limited, and one
where the grass is unlimited. All other model parameters (initial-number-sheep, initial-number-
wolves, etc) are unconstrained. Thus, two separate searches for population instability can be
run — one in each subspace — and the result will be the most “instability-causing” parameters
in each case. These parameters can then be compared, both to see which scenario permitted
greater instability, and also to see whether similar parameter settings contributed to this
in both cases. As a second example, in the NetLogo Fireflies model there are two general
strategies ("advance” and "delay”) which the fireflies can use to attempt to synchronize with
one another. One could search the parameter space for each of these cases, to determine
which of these strategies permits the quickest convergence to synchronization under varying

other conditions (cycle length, length of flashes, etc). This same idea is applied in Chapter
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5 in the real-world setting of examining the effects of different social network topologies on
viral marketing campaigns. In this case, the different subspaces being examined correspond
to the different social network structures that the model can be initialized with.
Searching different models. Alternatively, one can apply the same objective function to
explore two (or more) distinct agent-based models. For instance, suppose that two differ-
ent agent-based models are proposed by different teams of researchers to explain a certain
phenomenon, such as the boom/bust cycle of the stock market. To explore the range of
behavior these models are capable of, one might construct a measure of market volatility
that can be applied to each model. Searching for the parameters that give the most (or
least) volatile behavior can help us compare the models strengths and weaknesses. Using
a calibration measure, we can search for parameters that cause each model to best align
with an empirical dataset. On the other hand, we can perform sensitivity analysis on each
model separately, and thus compare how sensitive/robust each of the models is to changes
in its parameters. Even though each of the models may have a different set parameters,
by construction behavioral measures that can equally be applied to different models of the
same phenomenon, we can use QBME methodology to explore those models in tandem. We
will see an example of this in the case study in Chapter 4, which compares two models of
collective animal movement to see the extent to which each is capable of producing a certain
behavior.

Searching for different objective functions. This approach is one of the most obvious
extensions of the previous discussion. While finding parameters that yield a certain behavior
is informative, the development and maximization of single behavioral measures really only
scratches the surface of the query-based model exploration paradigm’s potential. It’s possi-

ble to search (sequentially or in parallel) for a variety of behaviors of interest, and thus form
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a larger mental map of the parameter space. Similar-seeming behaviors which you might
believe to be well-aligned may result from qualitatively different parameter settings. In par-
ticular, it’s useful to look at the degree to which behavior-maximizing parameters coincide in
the space. For instance, does searching for parameters that yield greatest wolf longevity also
yield the highest average wolf populations? Intuitively one might feel these are connected,
but one’s intuitions about ABM behavior can often be wrong. On the other hand, one might
discover that similar parameter settings maximize two seemingly unrelated behaviors, raising
new and unexpected questions. By performing searches for different behaviors in turn, and
then comparing the results, one can both refine existing theories and form new hypotheses

to explain how the model’s parameters affect model behavior.

3.4.8. Iterative exploration

In order to integrate the QBME framework with more typical exploratory model analysis,
a few words about applying it in practice will be helpful. The most important thing is that
model exploration is an iterative process that builds on itself. One doesn’t start with a
single question, design a measure to attempt to answer that question, run a search, draw
a conclusion, and then be “done” exploring their model. The exploration process is much
longer, richer, and messier than that. Modelers usually start with a variety of questions in
their mind, though they may focus on one or two at first. However, as they learn more about
model behavior, they continually refine the questions they are asking about the model, and
the results of each search will provide insight into certain questions, while opening up new
questions about model behavior. And oftentimes the questions are not precisely formed:
“Does the model ever do something crazy?”, “Why doesn’t it settle down to an equilibrium

more often?”. As mentioned above, QBME was never intended to replace other methods of
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exploration - rather it complements them by providing a way to answer certain types of mod-
eler questions that were very difficult to answer previously. Not all questions are amenable
to the QBME approach. Sometimes running the model with a few carefully human-chosen
parameters can answer a question much more effectively than a lengthy automated genetic
search. However, you can often gain at least partial insight into even the hardest or most
nebulous questions through an appropriate (and sometimes highly creative) transformation
of the question into a type that QBME can answer. At present, this transformative question
re-phrasal process is more of an art than a science. However, I do not feel that “sciencifying”
this process is the most pressing concern — that will come with time and experience. Rather,
I believe the greatest hurdle to integrating QBME in practice is is simply to get people shift
their exploratory paradigm, so that it occurs to them to try rephrasing their questions into
queries that automated search-based exploration could shed light on. Simultaneously, new
low-threshold tools (see Chapter 10) are needed to make the process easy enough to learn

and convenient enough to use in practice.
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CHAPTER 4

Case Study 1: Flocking/Swarming Behavior

“Birds of a feather flock together.”
— ANCIENT PROVERB

“You can’t think about thinking without thinking about thinking
about something.”

— SEYMOUR PAPERT

I have always loved Seymour Papert’s quote about “thinking about thinking”, and I think
it can be usefully adapted to many other situations, if broadly construed. Specifically, you
can’t think about exploring agent-based models in general, without thinking about exploring
some specific agent-based model. Hence the necessity of case studies. This chapter provides
a first case study of using genetic algorithms to explore behavior in two agent-based models
of flocking/swarming behavior (now frequently cataloged under the more general moniker
of “collective animal motion” models). As described in Chapter 1, the case study chapters
have been written to stand on their own, and thus a small amount of repetition regarding
motivation for the work and background literature is to be expected, and certain elements
of the QBME framework are restated in this context. This chapter demonstrates the use of
computer-aided model exploration, showing how evolutionary search algorithms can be used
to probe for several qualitative behaviors (convergence, non-convergence, volatility, and the

formation of vee shapes) in two different flocking models. This is accomplished by using
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BehaviorSearch, the new software tool I created for performing parameter search on ABMs
created in the NetLogo modeling environment. Of particular note in this chapter is the
importance of recognizing and interpreting the variance in parameter settings, as well as the
use of exploratory methods to compare across models. The results regarding the performance
of the genetic algorithm relative to other search algorithms are less decisive — a matter that

will be returned to in Chapter 9.

4.1. Motivation

Agent-based modeling is a powerful simulation technique in which many agents interact
according to simple rules resulting in the emergence of complex aggregate-level behavior.
This technique is becoming increasingly popular in a wide range of scientific endeavors due
to the power it has to simulate many different natural and artificial processes [S. Bankes,
2002; Bryson et al., 2007; North & Macal, 2007; Wilensky, 2001]. A crucial step in the
modeling process is an analysis of how the system’s behavior is affected by the various model
parameters. However, the number of controlling parameters and range of parameter values
in an agent-based model (ABM) is often large, the computation required to run a model is
often significant, and agent-based models are typically stochastic in nature, meaning that
multiple trials must be performed to assess the model’s behavior. These factors combine to
make a full brute-force exploration of the parameter space infeasible. Researchers respond
to this difficulty in a variety of ways. One common approach is to run factorial-design
experiments that either explore model behavior only in a small subspace or explore the full
space but with very low resolution (which may skip over areas of interest). A second common
approach is to vary only a single parameter at a time, while holding the other parameters

constant, and observe the effect of changing each parameter individually. However, because



133

ABMs often constitute complex systems with non-linear interactions, these methods risk
overlooking parameter settings that would yield interesting or unexpected behavior from the
model.

As an alternative, we argue that many useful model exploration tasks may instead be
productively formulated as search problems by designing appropriate objective functions,
as we will demonstrate by example in the domain of simulated flocking behavior. We also
introduce a new software tool (BehaviorSearch), which we have created for the purpose of
searching/exploring ABM parameter spaces. Using BehaviorSearch, we offer a case study
showing how search-based exploration can be used to gain insight into the behavior of two
ABMs of flocking that have been implemented in the NetLogo modeling environment [Wilen-
sky, 1999; Tisue & Wilensky, 2004]. We also provide a comparison of the performance of three
different search algorithms on several exploratory tasks for these two ABMs. In particular,
we will show how genetic algorithms and hill-climbing can be used to discover parameter
settings for these models that yield behaviors such as convergence, non-convergence, volatil-
ity, and specific flock shape formation. This approach can be useful for researchers to better
understand the models they have created, the range of behavior their models are capable of
producing, and which parameters have large impact on which behaviors. Flocking behaviors
were chosen for this case study because flocking is a well-known example of a successful agent-
based model, and can demonstrate a wide range of behaviors depending on the controlling

parameters.
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4.2. Related Work

Rather than using a full factorial experiment design for sampling points in the space, sev-
eral more sophisticated sampling algorithms exist (e.g., Latin hypercube sampling, sphere-
packing). These algorithms stem from the design of experiments (DoE) literature or more
specifically the more recent design and analysis of computer experiments (DACE) literature
(see [Sanchez & Lucas, 2002] for a discussion of applying DACE methodology to ABMs).
While appropriate experimental designs provide efficient sampling of the space in some sit-
uations, this is a separate direction from the search-oriented approach that we are pursuing
here. In particular, we are interested in the use of genetic algorithms [J. Holland, 1975]
(GAs) to search the ABM parameter spaces for behaviors of interest. Genetic algorithms
have proven to be quite successful on a wide range of combinatorial search and optimization
problems, and are thus a natural meta-heuristic search technique for this task. There is prior
work on parameter-search and exploration in ABM, and considerably more on the problem
of parameter-search in general.

Calvez and Hutzler [2005] have previously used a genetic algorithm (GA) to tune param-
eters of an ant foraging model, and discuss some of the relevant issues for applying GAs to
ABM parameter search. However, in this case, the GA’s performance was not compared to
any other method, and the effectiveness of GAs for the ABM parameter search task has not
been thoroughly investigated. Our present work contributes toward this goal. Specifically,
we compare the performance of a genetic algorithm against a stochastic mutation-based hill-
climber, as well as uniform random search, to serve as a baseline for comparison. We also
explore a different domain (i.e. flocking models rather than ant foraging), and thus provide

another perspective on the issue of automated model exploration.
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Genetic algorithms have also been used to attempt to calibrate agent-based models with
aggregate-level equation-based models as part of the SADDE methodology [Sierra et al.,
2004] for designing ABMs. Our current case study places an emphasis on exploration, as
opposed to calibration or model design. The modeler may pose a question about the model’s
behavior which are potentially interesting, and the distribution of search results should an-
swer that question, and may give additional insight into the interaction between parameters
as well.

Other methods of exploration (besides genetic algorithms) have previously been consid-
ered. Most notably, Brueckner and Parunak [2003] proposed a meta-level multi-agent system
to adaptively select points in the parameter-space to evaluate. This swarm-based approach
resembles particle swarm optimization [Kennedy et al., 1995] in that it uses a population of
agents that combine global and local information to choose a direction to move in the search
space, but it also considers whether to run additional simulations to improve the confidence
of results at locations in the space. Brueckner and Parunak also mention in passing that
genetic algorithms would be an appropriate choice for this type of search problem, but they
did not follow this path, and only offer results from the novel multi-agent optimization algo-
rithm they proposed. A comparison of genetic algorithms with this, and other swarm-based
approaches, would be an interesting area for future work.

Genetic algorithms have also been employed in parameter-search problems which are
not ABM, but closely related fields. For instance, genetic algorithms have been applied to
search for rules in cellular automata (CA) that will produce a certain behavior (e.g., density
classification) [Mitchell et al., 1996]. Cellular automata models could be considered a highly
restricted case of agent-based models, and the cell state transition rules could perhaps be

considered the parameters of such models, in which case this would constitute searching the
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parameter space. However, the density-classification task is arguably closer to a multi-agent
system coordination problem, rather than an agent-based model; the goal here is to get a
set of artificial agents (cells) to work together to solve some problem, not to simulate some
natural phenomena. Also, while CA rules are naturally represented by binary switches,
agent-based simulations tend to have a mix of parameter types, with numeric parameters
being the most common.

Our present investigation is also inspired by Miller’s work on active non-linear testing
[Miller, 1998], which demonstrated the use of meta-heuristic optimization (genetic algorithms
and hill climbers) for searching the parameter-space of the World3 simulation, a well-known
system dynamics model (SDM). Our work departs from Miller’s in two respects: 1) model
stochasticity (which is less frequently present in SDMs) is not addressed in those experiments,
and 2) the characteristics of search spaces produced by agent-based models likely differ from

those which are produced by aggregate equation-based models.

4.3. Methods

4.3.1. Flocking Models Overview

For our case study we explore the parameter-space of two agent-based models, searching
for a variety of target behaviors. The two ABMs are the Flocking model [Wilensky, 1998]
(denoted as Flocking) and the Flocking Vee Formations model [Wilkerson-Jerde, Stonedahl,
& Wilensky, 2010] (denoted as Flocking VF). While the parameters of these two models are
discussed briefly below, an in-depth discussion of these models is beyond the scope of this
document. Thus, we invite interested readers to examine the models themselves, which are

both available in the NetLogo models library.
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Flocking closely resembles the seminal ABM of swarming behavior in artificial birds (play-
fully dubbed “boids”) that was introduced by Reynolds as a way to create life-like cinematic
animation of flocking birds or other flying/swimming/swarming creatures [C. W. Reynolds,
1987]. The behavior of each “boid” is influenced by three basic rules, which provide impetus
toward alignment, coherence, and separation. The relative influences of each are controlled
by the parameters max-align-turn, max-cohere-turn, and max-separate-turn, respectively. Ad-
ditionally there are parameters controlling the distance at which birds have knowledge of
other birds (vision), and the minimum distance of separation which birds attempt to maintain
(minimum-separation). For this first model, exploratory search tasks include the discovery of
parameters that yield quick directional convergence (Section 4.4.1), non-convergence (Section
4.4.2), and volatility of the aggregate flock’s heading over time (Section 4.4.3).

Flocking VF is based loosely on an extension of Reynolds’” work that was proposed
by Nathan and Barbosa [2008], attempting to produce the vee-shaped patterns often ob-
served in large migratory birds, such as Canada geese. Flocking VF has 8 controlling
parameters, which account for fine-grained control over bird vision (vision-distance, vision-
cone, obstruction-cone), takes into account benefits of “updraft” from nearby birds (updraft-
distance, too-close), as well as flying speeds and acceleration (base-speed, speed-change-factor,
and max-turn). The final exploratory search task is to seek parameters that best yield V-

shaped flock formations, in both Flocking and Flocking VF (Section 4.4.4).

4.3.2. Search Algorithms

For each search task, we tested three different search algorithms: uniform random search
(RS), a random-mutation hill climber (HC), and a genetic algorithm (GA). For all of the

search methods, each ABM parameter’s value was encoded as a sequence of binary digits
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(bit string) using a Gray code', and all the parameters’ bit strings were concatenated to
create a string that represents one point in the parameter-space. A bit string is evaluated by
decoding it into the ABM parameter settings, and running the model with those parameters.

The RS method simply generates one random bit string after another, and in the end
chooses the one that best elicited the desired model behavior. RS is a naive search tech-
nique, which we included as a baseline for comparison, to determine whether using more
sophisticated meta-heuristics (such as the HC and GA) were indeed helpful.

Our HC is primarily a local search algorithm. It starts with a random bit string (s). A
new string (Spew) is generated from s (each bit of s gets flipped with probability 0.05, which
is the mutation-rate). If s,e, is better than s (generates behavior that judged closer to the
desired target behavior), then the HC chooses s, as the new s, and the process repeats.
If the HC becomes stuck (after 1000 unsuccessful move attempts), it will restart at a new
random location in the search space, which makes this a quasi-local search method.

Our GA is a standard generational genetic algorithm [J. Holland, 1975], with a population
size of 30, a crossover rate of 0.7, and a mutation rate of 0.05, using tournament selection
with tournament size 3. The GA is a more sophisticated search mechanism than HC or
RS, and there are several reasons to believe that it might perform better. First, the GA
is population-based, which allows it to explore multiple regions of the space simultaneously
(more of a global search technique). Second, genetic algorithms have previously been shown
to perform well on a variety of nonlinear and multi-modal search/optimization problems.
Third, genetic algorithms (like the biological processes of evolution that inspired them) often

have a way of coming up with creative or unexpected solutions to a problem, which humans

TA high-order binary encoding requires flipping 4 bits to change from 7 (01113) to 8 (10002). In a Gray
code, consecutive numbers only require a single bit flip, thus creating a smoother mapping from numbers
into binary search spaces [Caruana & Schaffer, 1988; Whitley, 1999].
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would not have considered. However, depending on how the search space is structured,
simpler approaches may be more effective. For example, it was shown in one case that a HC
performed better on a problem that was specifically designed with the expectation that GAs
would work well on it [Mitchell, Holland, & Forrest, 1994]. One important consideration
is whether there are so-called building blocks in the solution-space, which the GA is able
to discover and combine (via genetic crossover) to form better solutions. Phrased at the
level of the agent-based model, this question becomes: are there certain combinations of
several parameter settings, each of which partially produce desired target behavior, and
when combined together produce that behavior even more strongly? If so, the GA may be
able to take advantage of that structure in the search space to efficiently find solutions. This
notion of building blocks may appear counter to the earlier argument that GA’s do well in
multi-modal nonlinear search spaces, but it is not a paradox. One could imagine a perfectly
decomposable problem, where the fitness of each individual is exactly the sum of the fitness
contributed by each building blocks, and there are no overlapping building blocks; this would
result in a unimodal function with certain linearly additive properties. However, it is possible
for complex nonlinear functions to also contain building blocks, where the building blocks
may overlap and interact with each other in nonlinear ways to form rough multi-modal
fitness landscapes. For one class of complex search functions designed specifically to exhibit
building block structure, see Holland’s [2000] hyperplane defined functions (hdf’s).

The objective function (or “fitness function” in the parlance of evolutionary computation)
was always averaged across 5 model runs (replicates) with different random seeds, to reduce
variability stemming from model stochasticity. While this variability is essentially “noise”
from the search algorithm’s perspective, it is simply reflecting the fact that running the ABM

results in a range of behavior depending on the initial placement of the birds. Our objective
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functions are attempting to characterize the presence or absence of a certain behavior on
average, and short of running the simulation with every possible initial condition (which is
impossible), there will always be some uncertainty about the objective function measure.
Taking the average value from several replicate runs of the simulation, however, reduces this
uncertainty and smooths the search landscape.

The objective functions were different for each task, and will be discussed individually
in each of the investigations below (Sections 4.4.1-4.4.4). For efficiency, objective function
values were cached after being computed.? The search algorithms were stopped after they
had run the ABM 12000 times. Each search was repeated 30 times (except for the volatility
exploration in Section 4.4.3, which was repeated 60 times for improved statistical confidence),
to evaluate search performance and ensure that search findings were not anomalous. To
perform these searches, we use the software tool BehaviorSearch [Stonedahl & Wilensky,

2010a], which will be discussed in greater detail in Chapter 10.

4.4. Explorations

4.4.1. Investigation 1: Convergence

The convergence of swarm-based systems is one potential property of interest, and has been
formally studied for some theoretical cases [Cucker & Smale, 2007]. Thus, the first behavior
of interest for the Flocking model was the ability of birds starting at random locations and
headings to converge to be moving in the same direction (i.e. directional, not positional,

convergence). In order to make the search process effective, we must provide a quantitative

2The goal of caching is to avoid repeating expensive computations. However, because the model is stochastic,
re-evaluating points in the search space could lead to different results than the cached values, meaning that
the search process is affected by caching. For further discussion of noise/uncertainty and fitness caching, see
Chapter 8.
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measure to capture the rather qualitative notion of convergence. This quantitative measure
(the objective function) will provide the search with information about how good one set of
parameters is, relative to another, at achieving the goal. Specifically, we would like to find
parameters that yield very little variation between birds’ headings. Thus, we will attempt

to minimize the following objective function:

Frnonconverged = stdev({v,(b) | b € B}) + stdev({v,(b) | b € B}) (4.1)

where v,.(b) and v, (b) are the horizontal and vertical components of the velocity” of bird b,
and B is the set of all birds. The standard deviation (stdev), which is the square root of
the variance, serves as a useful measure of the variation for velocity, and we must apply it in
both the z and y dimensions. A value of fonconverged = 0 would indicate complete alignment
of all birds. We measure fponconverged after 75 ticks (model time steps). While 75 ticks is
effective here for finding parameter settings that cause the flock to quickly converge, if we
were instead interested in the long-term behavior of the system, a longer time limit would
be more appropriate. In terms of the query-based model exploration (QBME) framework
for formulating measures to quantify behavior (see 3.2), we are using intra-agent measures
of v, and v, that are being combined by an agent group level stdev measure (that quantifies
the diversity of some property of agents in the group). At the temporal level of analysis,
we are discarding behavioral information from the beginning of the run, and only measuring
behavior at the time-slice ¢ = 75. (For a lengthier discussion of the QBME conceptual

framework for measure formulation, refer back to Chapter 3.)

3In NetLogo it is usually more natural to think in polar coordinates or “turtle geometry”, where each bird’s
velocity is represented by its speed and heading (angle). However, taking the stdev (or mean) of a set of
angles is problematic due to the discontinuity between 359 degrees and 1 degree, so we expressly split the
velocity into Cartesian components to avoid this issue.
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Search performance for the convergence task
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Figure 4.1. Search performance for the convergence task, comparing how effi-
ciently the GA (genetic algorithm), HC (hill climber), and RS (random search)
can find parameters that cause the flock to quickly converge to the same head-
ing. (Error bars show 95% confidence intervals on the mean.)

The plot of search progress (Figure 4.1) shows that on average the HC may have found
better model parameters early in the search, but in the end the GA’s performance was
superior (t-test, p < 0.01). Both GA and HC significantly outperformed random search.
The best parameters found in each run are displayed in Figure 4.2. Examining the resulting
parameters is a key step of the QBME process. As modelers we are often interested in the
extent to which the model exhibits the behavior we have quantified, but we are often even
more curious about what settings of the parameters conjured up such behavior, because
this information can lead us to causal or mechanism-based explanations for the behavior.
Furthermore, it is preferable to look at the collection of parameters returned by a number

of searches, rather than focusing only on the single best parameter setting discovered. As
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Figure 4.2. LEFT: Distribution of model parameter settings found to cause
quickest convergence in each of the 30 GA searches. All box-and-whisker plots
presented in this chapter show the median line within the lower-to-upper-
quartile box, with whiskers encompassing the remainder of the data, apart
from outliers which are marked with x’s.
(after 75 model steps) using the best parameters the GA discovered.

RIGHT: Visualization of the flock

discussed in the QBME framework (in particular, see Section 3.4.5), diversity among the

parameters returned by the searches can provide additional insight into model behavior. In

this case, Figure 4.2 shows us that it is crucial for birds to have long-range vision, and that

even a small urge to cohere is detrimental to convergence. On the other hand, the wide spread

for max-separate-turn suggests that convergence is not very sensitive to this parameter (given

the other parameter settings). Often these observations align with our intuitions about the

model — for instance, a larger vision naturally allows information to travel more quickly

between agents, and thus is beneficial for convergence to a common state.

Figure 4.2 also shows one possible converged state from running the model using the best

parameters found by the GA.
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Figure 4.3. LEFT: Distribution of model parameter settings found to cause
non-convergence in each of the 30 GA searches. RIGHT: Visualization of a
non-converged flock using the best parameters the GA discovered.

Investigation 2: Non-convergence

Next, we probed for parameter settings that cause the birds not to globally align. For this

task, we simply maximized the same objective function we minimized in Section 4.4.1. This

task turned out to be rather trivial, as all three search methods (GA, HC, and RS) very

quickly found parameter settings that yielded little or no flock alignment. That such behavior

is rather common in the parameter space is illustrated by Figure 4.3, which shows a wide

distribution of best parameters. The results suggest that for non-convergence, it is helpful

for birds to have a low-to-medium vision range, desire a large amount of separation from

each other (minimum-separation), and act to achieve the separation (non-zero max-separate-

turn). Digging deeper, the results tell us that it is the relationship between parameters that

matters; if minimum-separation is larger than vision each bird will seek to avoid any other

bird as soon as it sees it, as separation takes precedence over the align/cohere rules.
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4.4.3. Investigation 3: Volatility

Our third experiment sought parameters for the Flocking model that would yield the most
volatility (or changeability) in global flock heading. In contrast to Sections 4.4.2 and
4.4.1 above, we are now interested in looking at model behavior across time, rather than
static snapshots of the model state. Volatility is an important, though general, concept
in agent-based modeling. In this instance, we are specifically interested in the volatility
of an aggregate-level property (group heading) over time. In a model of collective animal
motion, the type of volatility we seek relates to coordinated flock/school movement: how
quickly can the entire group respond and change from moving in one direction to moving
in another? Behavior of this type is important in real-world flocks, swarms, and schools for

predator and/or obstacle avoidance. To seek volatile flock behavior, we attempt to maximize

fvolatitity, as defined in (4.4).

Uy (t) = mean({v,(b) | b € B} at tick t (4.2)

Ty (t) = mean({v,(b) | b € B} at tick ¢ (4.3)
Footatitity = stdev(vz(t) for t = 400..500) + stdev(v,(t) for t = 400..500) (4.4)

Again, on average the GA was slightly more successful than the HC in eliciting flock
heading volatility, and both significantly outperformed random search (Figure 4.4). Only
5 out of the 60 GA searches’ best parameter settings had a non-zero value for minimum-
separation, indicating that birds flying close together is a key factor for maximal volatility.
Long-range vision, and large effects of max-align-turn and max-cohere-turn are also important

(see Figure 4.5). The flight pattern of a flock exhibiting considerable volatility is shown
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Search performance for the volatility task
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Figure 4.4. Comparison of search algorithm performance for the flock heading
volatility task. The final mean performance of the GA was better than the HC
(t-test, p < 0.05), but not substantially so. (Error bars show 95% confidence
intervals on the mean.)

in Figure 4.5. The single bird positioned at the left side in the rear is at least partially
responsible for shift in flock heading, because of the strong coherence parameter.

Despite taking the average of 5 replications, noise due to model stochasticity was still
significant. For example, the search reported finding settings yielding 0.99 volatility, but
averaging 1000 runs at those settings showed true volatility of 0.41. This fact could bias
the search toward parameters that occasionally yield very high volatility, over those that
consistently yield moderately high volatility. Both goals are potentially interesting for model
exploration; however, appropriate noise reduction methodology is a worthy subject for future

research.
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Figure 4.5. LEFT: Distribution of model parameter settings (from each of the
30 GA searches) found to cause the most volatility in flock heading. RIGHT:
Visualization of the flock after 500 model steps (also showing each bird’s path
over the last 100 steps), using the best parameters found by the GA.

4.4.4. Investigation 4: Vee Formations

The final experiment was to search both the Flocking and Flocking VF models for a more
complex behavior, which we shall refer to as veeness. Veeness measures the degree to which
birds are flying in vee, or more generally, echelon formations. Our specific questions are:
1) Do any parameter settings cause Flocking to exhibit veeness? 2) How much better can
Flocking VF do? and 3) What parameters are most important for the best vee/echelon
creation?

To calculate veeness, we first cluster all the birds in the world into separate flocks,
according to proximity (within 5 distance units of another bird in the flock) and directional
similitude (less than 20 degrees angular difference in heading). A flock with less than 3 birds

is assigned a flock veeness score of 0. Otherwise, it is calculated by choosing the optimal point
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bird and left /right echelon angles, calculated as described below. (Intuitively, the sum of the
two echelon angles is the interior angle of the flock vee.) Echelon angles are constrained to
be between 25 and 50 degrees, comprising a mid-range of echelon angles observed in nature
[Heppner, Convissar, Moonan Jr, & Anderson, 1985]) for the flock. For any candidate point
bird, the left and right echelon angles are calculated separately, by first dividing flockmates
into those to the right or left, relative to the point bird. The echelon angles are then chosen
such that they minimize the mean-squared-error difference between the echelon angle and
the angle between the point bird and all following birds on that side. Flock groupings with
echelon angles and flock veeness scores can be seen in Figure 4.8. The flocking score for the
flock is the reciprocal of the mean-squared-error value for the best “point” bird, rescaled so
that a flock in perfect echelon/vee formation has a score of 1.0. Overall veeness is a weighted
average (by flock size) of the veeness scores of individual flocks. Veeness was measured every
100 model ticks, between 1000 and 2000 ticks. Searches for both Flocking and Flocking VF
used 30 birds and the same veeness metric.

The results show that Flocking can create formations that appear only mildly vee-like at
best, but Flocking VF can (as expected) create much better vees (as shown in Figure 4.8).
For Flocking VF to produce the best vees (according to our chosen veeness metric), the vision-
cone angle should be large, perhaps roughly 3 times larger than the obstruction-cone angle,
the bird’s base-speed and max-turn angle should generally be low, but the speed-change-factor
should not be too small. We will not elaborate on specific implications of these findings for
the Flocking VF model here, but broadly argue that findings such as these can lead modelers
to a better understanding of their model by cognitively linking changes in model parameters

with the qualitative behavior being investigated.
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Search performance for the vee-shapedness task
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Figure 4.6. Comparison of search performance for the vee-shapedness task on
both the Flocking and Flocking Vee Formation models. (Error bars show 95%
confidence intervals on the mean.)

Unlike in previous experiments, the HC search method performed slightly better than
the GA (see Figure 4.6), but the difference was not statistically significant. For the Flocking
model, RS was not far behind GA and HC, indicating that the search space contains a
fairly large number of parameter settings that yield a similar level of “veeness” as the best
parameter settings that were found (which still are not very good, as we shall see). Given
this, it is unsurprising that HC and GA were roughly on par for this task. It is more of a
mystery why the GA did not outperform HC in exploring the Vee Flocking model, where good
solutions were possible, and both HC and GA significantly outperformed RS. There are a
number of possible explanations, but a reasonable hypothesis is that the search space has few

local optima where the HC would be trapped, and there is sufficient fitness gradient for the
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Figure 4.7. Distribution of model parameter settings found to yield the best
vees in the Flocking model (left), and the Flocking Vee Formation model

(right), in each of the 30 HC searches.
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Figure 4.8. Visualization of a run of the Flocking model (left), and the Flock-
ing Vee Formation model (right), using the best “vee-forming” parameters
found by the 30 HC searches. Birds are shaded by flock group, dashed lines
show average flock heading relative to the “point” bird, and gray lines show
best-fit angles for right and/or left echelons of the vee formation. The numeric
“veeness” measure for each individual flock is also shown.
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HC to climb to the optimal regions of the space from many initial starting locations. Thus,
although the GA is also able to reach the optimal regions of the space, it initially spends
more time exploring unproductive areas of the search space in search of better values, rather

than climbing directly.

4.5. Conclusion and Future Work

Beyond the specific results concerning the behavior of two particular agent-based models
(Flocking and Vee Flocking), there are several more general conclusions that may be drawn
from this case study. First, evolutionary algorithms such as the GA and HC are indeed
effective means of exploring the parameter space of ABMs. Their performance was vastly
superior to RS, except in the cases where the task was too easy (e.g., nonconvergence) or
too hard (veeness in Flocking) to make substantial progress. The difficulty of the search task
relates to how dense or sparse the desired target behavior is in the search space: parameter
settings that cause the Flocking model to not converge are plentiful in the parameter space,
whereas parameter settings that cause good vee formations are either extremely rare or
nonexistent. However, note that the characteristics of the search space could be identical in
both of these cases, and whether we classify the task as “too easy” or “too hard” is merely
a matter of extrinsically chosen criteria for search success. Second, by running multiple
searches on a stochastic model and looking at the distribution of best-found parameter
settings, rather than just the single best setting for the parameters, we can uncover trends
(or at least postulate relationships) about the interactions between model parameters and
behavior. One interpretation is that we are implicitly performing a type of sensitivity analysis
on the search process for a particular behavior, but that the results of that analysis can tell

us something about the model. Note that the trends we find are unlikely to be global
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(characterizing the whole parameter space), but apply only to a local view that is focused
on regions of the parameter space where the target behavior is expressed mostly strongly.
These results also suggest several important areas for additional work. From this single
case study, we cannot determine whether genetic algorithms will generally outperform the
simpler stochastic hill climbing algorithms for model exploration tasks, or not. This chap-
ter offered a precursory comparison of search algorithm performance on these two flocking
models, but Chapter 9 will provide much more extensive performance benchmarking of two
types of genetic algorithms (generational and steady-state) relative to random search, hill
climbing, and simulated annealing, using a range of ABMs and exploration tasks. We can
also conclude from this work that additional consideration should be given to the treat-
ment of model stochasticity and noisy objective functions. While running fewer replicates of
model runs takes less time for searching, large quantities of noise can inhibit search progress;
this topic will be discussed further in Chapters 8 and 9. In general, this introductory case
study shows that the prospects are bright for using meta-heuristic search, such as genetic
algorithms, to improve model exploration and analysis. It is our hope that these promising
prospects will encourage ABM practitioners to flock toward (and eventually converge on)

new methodologies for model parameter exploration that take advantage of these ideas.
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CHAPTER 5

Case Study 2: Viral Marketing

“Advertising is the art of convincing people to spend money they
don’t have for something they don’t need.”

— WILL ROGERS

“Marketing is too important to be left to the marketing depart-
ment.”

— DAvID PACKARD

As an extension of Will Roger’s famous quip, we may view “viral marketing” as the art
of convincing people to convince other people to spend money they don’t have for something
they don’t need. Naturally, this task is not always easy, and figuring out the best way of
approaching the problem may be very challenging indeed. Perhaps this is why David Packard
believed that the task of marketing should not be entrusted solely to marketing departments,
and recent years have shown that computer scientists have something to bring to the table
here. Specifically, this chapter will demonstrate that agent-based modeling of interactions on
social networks can provide a useful expansion to more traditional techniques of marketing
research.

One method of viral marketing involves seeding certain consumers within a population to
encourage faster adoption of the product throughout the entire population. However, deter-
mining how many and which consumers within a particular social network should be seeded

to maximize adoption is challenging. In this chapter we define a strategy space for consumer
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seeding by weighting a combination of network characteristics such as average path length,
clustering coefficient, and degree. We measure strategy effectiveness by simulating adoption
on a Bass-like agent-based model. The Bass diffusion model [F. Bass, 1969; F. M. Bass, 2004]
is a well-known model in the field of marketing for characterizing the adoption of a product
in the marketplace over time, as the result of interactions between consumers and the twin
forces of innovation and imitation. Whereas the classic Bass model assumes perfect popu-
lation mixing and uses differential equations to predict adoption patterns, the agent-based
version applies these principles to local interactions between agents in a social network con-
text [Rand & Rust, 2011]. We examine this model’s behavior on five different social network
structures: four classic theoretical models (random, lattice, small-world, and preferential
attachment) and one empirical (extracted from Twitter friendship data). To discover good
seeding strategies, we employ genetic algorithms to search through the parameter-space of
agent-based models. This evolutionary search also provides insight into the interaction be-
tween strategies and network structure. Our results show that one simple strategy (ranking
by node degree) is near-optimal for the four theoretical networks, but that a more nuanced
strategy performs significantly better on the empirical Twitter-based network. We also find
a correlation between the optimal seeding budget for a network, and the inequality of the
degree distribution. A short follow-up study with a second empirical network (an online
social network for college alumni) corroborates our findings on the Twitter-based network.
In previous chapters we have noted that exploration is not equivalent to optimization;
however, there are many cases where optimization is an important task for model analysis.
This chapter focuses on the use of genetic algorithms to perform optimization for opti-
mization’s sake, rather than for the purpose of seeking qualitative behavior. However, the

particularly interesting findings go beyond merely identifying optimal seeding strategies; it is
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the cross-comparison of “optimal” parameters across different model conditions that yields
the most fascinating results. Searching a model’s parameter space while fixing certain model
parameters in turn (e.g., the underlying social network topology and diffusion “virality”) can
reveal interesting patterns of model behavior. Specifically, in this chapter we can learn about
how different viral marketing strategies play out differently in a variety of social networks

structures.

5.1. Motivation

Viral marketing, or word-of-mouth marketing, is based on the idea that consumer discus-
sions about a product are more powerful than traditional advertising. One way to encourage
positive word-of-mouth is by distributing reduced or free products to target consumers who
will then discuss the product with their friends and encourage those friends to buy the prod-
uct. However, whom to seed with these initial products in order to maximize the amount
and rate of product adoption is not obvious. Given an arbitrary social network and a limited
seeding budget, choosing the optimal seeding locations has been shown to be an NP-Hard
problem [Kempe, Kleinberg, & Tardos, 2003]. Furthermore, it is not clear what the proper
seeding budget should be for a particular network. Assuming that the product is beneficial
and that seeded consumers are inclined to speak positively about it, seeding more consumers
will increase the speed of product adoption. However, giving away more free products in-
creases the overall expense of the promotional campaign. In addition, seeded consumers are
removed from the pool of potential customers, which may decrease total revenue for the
product. Thus, it is important to choose both the correct target consumers to seed and the

correct seeding budget to maximize adoption.
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This problem has direct implications for real-world marketing managers. The growth of
YouTube, Twitter, Facebook, and other digital social media capabilities, has given market-
ing managers a new platform by which to advertise and market their products to consumers.
The compelling aspect of these platforms is that they encourage consumers to develop on-
line social networks which provide a formalization of the social interactions of individuals.
However, despite the power of this new media it has been difficult for marketing managers to
use this platform successfully [Baruh, 2009]. In many cases, due to privacy considerations,
the full network described by these social media applications is not known, so advertisers
are forced to rely on third party information about the consumers they are targeting.

To account for the challenges that marketers face, we propose a version of the general viral
marketing problem, which we call the local viral marketing problem or LVMP. We will first
overview related research, then formally define the LVMP, and discuss the agent-based model
we use for simulating adoption and the five networks we will test it on. We propose a range of
strategies to solve the LVMP, then discuss experimental results from exploring this strategic
space using a new evolutionary tool (BehaviorSearch), and conclude with recommendations

for future work.

5.2. Related Work

Recently there has been work on viral marketing from two different disciplines, com-
puter scientists, and marketing researchers. Originally introduced to computer science by
Domingos and Richardson [Domingos & Richardson, 2001}, the problem was formalized by
Kempe, Kleinberg, and Tardos [Kempe et al., 2003] who described the problem as selecting
the correct individuals to seed with a product in an arbitrary network given a fixed mar-

keting budget. They showed that their formalization of this problem is in fact NP-hard,
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but presented some heuristic solutions to the problem, with some provable approximation
guarantees. However, their best approximation algorithm requires global knowledge of the
network; in other words, in order to be implemented the marketing manager would need to
know every node in the network and how it is connected to every other node; unfortunately,
this is an unrealistic requirement in many real-world cases.

Leskovec, Adamic, and Huberman [Leskovec, Adamic, & Huberman, 2007], on the other
hand, take a descriptive approach to viral marketing. Similarly within marketing research,
Goldenberg, Libai and Muller [Goldenberg, Libai, & Muller, 2001] use a cellular automata
model to describe adoption processes and characterize which individuals have the greatest
effect on adoption. Goldenberg and others have also examined the role of hubs (individuals
with a high number of friends) in the adoption process [Goldenberg, Han, Lehmann, &
Hong, 2009]. Other marketing researchers have explored how innovations diffuse across a
variety of different topologies [Shaikh, Rangaswamy, & Balakrishnan, 2006], and how word-
of-mouth affects product adoption [Chevalier & Mayzlin, 2006; B. Ryan & Gross, 1943]. In
contrast to this previous work, our goal is to make prescriptive suggestions for seeding within
viral marketing campaigns, but at a knowledge level that could be available to marketing
managers.

To accomplish this task, we use a genetic algorithm (GA) [J. Holland, 1975] to search
for optimal (or high-performing) strategies in the space of possible consumer seeding strate-
gies. Our task is equivalent to the problem of optimizing the parameters of a multi-agent
simulation, where the parameters control the seeding strategy. In a different context, one of
the earliest uses of a GA was to characterize the parameters of a cell simulation [Weinberg,
1970]. Later, Miller proposed the the use of nonlinear optimization techniques for a variety

of model exploration and testing tasks, dubbed as “active nonlinear testing” or ANT [Miller,
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1998]. Calvez and Hutzler used a genetic algorithm for several parameter search/calibration
tasks in an agent-based model of ant food foraging [Calvez & Hutzler, 2005]. Within the
marketing domain, Midgley, Marks, and Kunchamwar [Midgley, Marks, & Kunchamwar,
2007] have used a genetic algorithm to examine agent-based models in a consumer retail
environment. Building on this research, we have constructed a general tool, which we call
BehaviorSearch [Stonedahl & Wilensky, 2010a], for using evolutionary computation to ex-
plore the parameters of agent-based models created using the NetLogo agent-based modeling

toolkit [Wilensky, 1999]. (BehaviorSearch will be discussed in further detail in Chapter 10.)

5.3. Local Viral Marketing Problem

The global viral marketing problem' (GVMP) consists of selecting a group of individuals
who will be seeded with a product in order to encourage their friends to adopt a product at
a quicker rate than they normally would have. The problem assumes that there is a graph
G, of vertices and edges, where each vertex is a consumer in the network and each edge
represents a social connection between two vertices. In addition to the social network, there
is also an adoption function, f;(¢), which specifies the likelihood that a vertex, ¢, will adopt
a product at time t, given the adoption state of its immediate neighbors. For the purposes
of the results presented herein, the adoption function f;(¢) is assumed to be the same for all
individuals, so we will use the notation f(t).

In order to simultaneously consider both the amount and rate of adoption, we will use the
notion of the net present value (N PV') of an adoption network [Goldenberg, Libai, Moldovan,
& Muller, 2007]. Intuitively, the NPV measure accounts for the fact that it is worth more to

a company if people buy its product now, rather than several months from now, especially

TAlso referred to as the Influence Maximization problem in some contexts.
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since new competing products may enter the marketplace. The NPV, given an adoption
function (f(t)), social network (G), and seeded vertices (.S), is the sum of vertices that
adopt the product multiplied by the profit from the product and a discount factor for time
of adoption, specifically:

o0

NPV(G, S, f(t)) = _a(t)pX'

t=0

where a(t) is the number of adopters at time ¢, p is the profit for adoption of a product, and
A is the discount factor. In our experimental results, we chose a 10% discount rate (A = 0.9),
which has previously been used in related marketing literature [Goldenberg et al., 2007; Libai,
Muller, & Peres, 2009]. This discount rate represents the cumulative effect of several factors,
including the opportunity cost of not having the money earlier and the potential necessity to
lower prices over time to stay competitive. ? The fully specified GVMP is to identify a set of
vertices S that will maximize the network’s NPV, given that |S| x ¢ < b, where ¢ is the cost
of seeding one vertex, and b is a specified budgetary constraint. In the terms of the QBME
framework from Chapter 3, the model behavior we are interested in is the aggregation of the
number of agents whose individual-level state changes (from “not adopted” to “adopted”),
condensed over time. However, the NPV measure has the interesting property that it doesn’t
average equally across time steps - instead it is a weighted average over time, where events
that happen later are given less weight.

The local viral marketing problem (LVMP) is similar to the GVMP, except that we
remove knowledge of the structure of the global network (G), instead offering only charac-
teristics of each vertex which provide summary statistics about the vertex and its role in the

network. There are many different network measures that could be chosen [Wasserman &

2Preliminary comparison experiments suggest that using other reasonable discount values is unlikely to
change our qualitative results.
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Faust, 1994]; in Section 5.4.3 we will describe the specific measures we used, but one example
measure is the vertex degree (i.e., the number of neighbors). Specifically, the problem is to
find a weighting function, w(7), that determines where to place vertex i in a priority queue
for seeding. Once the queue has been created, vertices to be seeded are chosen in rank order,
until the budget () is exhausted. Also, in contrast to the GVMP, in our formulation of the
LVMP we allow b to be varied as part of the strategy, which includes finding an optimal
budget amount as part of the problem definition. Thus, we define a seeding strategy, S, to be
a weighting function w(7) together with a specified budget, b, as this is sufficient information
to seed an arbitrary network.

Our examination of the LVMP is arguably more relevant to the real-world than the
GVMP for a number of reasons. As discussed in Section 5.1, often the best budgetary value
to use for viral marketing seeding is unknown. Moreover, in many real-world cases the global
social network is also unknown. In face-to-face interactions, no one knows the full network
of any reasonably sized market, and even in the case of social networking web sites, privacy
constraints may prevent access to the whole network (e.g., Facebook), or data collection
limitations may be prohibitive (e.g., Twitter). Even in cases where data is available, running
simulations on the entire network to determine the optimal seeding strategies would be
computationally difficult, if not impossible. Solving the LVMP for realistic networks of
moderate size could provide marketing managers with a way to specify solutions that are not
reliant on global network knowledge. Moreover, since the LVMP strategies are specified in a
generalizable way that is not dependent on a particular network structure, they may facilitate
learning of solutions that perform well across a variety of network architectures. Finally,
solutions to the LVMP could be used to drive new business models. If the role of an individual

in diffusion is known, then social media platforms, such as Facebook, or intermediaries who
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work with these platforms, such as a third-party advertising firm, could charge different
premiums to brands for advertising to different types of consumers, based on the consumers
network characteristics. For instance, they might charge more for an advertising campaign
targeting well-connected users than for a campaign using random sampling. Solutions to the
LVMP would provide a way to quantify the differential utility, and appropriately price these
campaigns.

In this chapter, we specifically address these questions: How do different social networks
affect the optimal seeding budget and strategy? Does providing a complex strategy space
yield better solutions than simple strategies? How robust are LVMP strategies to different

adoption “virality” levels?

5.4. The Model

In order to investigate the LVMP, we must specify a model for the diffusion of prod-
ucts throughout the network. Specifically we must describe an adoption function, f(¢), the

network structure, GG, and the strategy space, S.

5.4.1. Adoption Function

There are at least two classes of product adoption function that have been examined, Bass-
like models [Rand & Rust, 2011; Goldenberg et al., 2001] (sometimes called “cascade” mod-
els), and “threshold” models [Watts, 2002; Watts & Dodds, 2007]. In the Bass-like model
(so-called because of its resemblance to the aggregate-level Bass model [F. Bass, 1969]), the
adoption decision consists of two factors, whether to adopt due to individual innovation, and
whether to adopt due to peer imitation. In a “threshold” model, each individual adopts only

if the fraction of their neighbors that has adopted is above a certain threshold. We will use
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a Bass-like adoption function that is the most immediate translation of the aggregate Bass
model to an individual level and is an example of an independent interaction model that has
been previously examined in similar forms [Goldenberg et al., 2009; Watts & Dodds, 2007;

Shaikh et al., 2006; Toubia, Goldenberg, & Garcia, 2008]. In our model, the heuristic for

ng(t)

adoption of individual ¢ can be written as, f(t) = p+q( ) where p is the effect of external
influences on adoption, ¢ is the effect of social influences on adoption, n is the number of
neighbors of i, and n,(t) is the number of neighboring vertices who have already adopted
the product at time ¢. Although this adoption function clearly does not capture all aspects
of real-world influence between consumers, it has been validated against empirical data with
good results [Rand & Rust, 2011].

In the present work, we examine two different diffusion scenarios: a ‘medium virality’
scenario (p = 0.01535 and ¢ = 0.455) and a ‘high virality’ scenario (p = 0.0007 and ¢ =
0.53), which are at the middle and extremes (respectively) of empirically observed values
[Chandrasekaran & Tellis, 2007]. We do not examine a "low virality’ scenario (high p and
low ¢), since the dominance of individual adoption over peer-based word-of-mouth minimizes
the network-effects that interest us, and viral marketing does not significantly affect adoption.

Different values of p and ¢ may be seen to represent different types of products. A product
which has a high p relative to other products is one that consumers will naturally adopt on
their own; this could represent a product which is just clearly useful, such as a refrigerator.
A product which has a high ¢ relative to other products is one which consumers are more
likely to adopt if many of their friends have adopted; this could represent a product with

considerable network efforts, such as a fax machine, or a product which encourages social

discussions, such as the Flixster Facebook app for sharing movie recommendations.
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5.4.2. The Networks

In the experimental results below, we investigate four abstract networks created using net-

work generation routines from the social network literature, along with one empirically de-

rived network. In all five cases, the number of nodes ? in the network is exactly 1000. For

the generated networks, we also chose parameters that would yield a similar® edge density

to that of the empirically derived network. Specifically, the networks are:

(1)

random - an Erdds-Renyi random graph [Erdés & Rényi, 1960], with a uniform
probability p of an edge being present between any two vertices (p = 0.26712 in the
results below).

lattice - a regular network, where each node in the network is located on a circle
and connected to a particular number of neighbors (26 in the results below) on
either side of them.

small-world (sw) - this network is generated by starting with a lattice network,
and randomly rewiring some of the edges as described in [Watts & Strogatz, 1998]
(in the results below, we used a degree of 26 and a rewiring probability of 0.01).
preferential attachment (pa) - this network is generated with the preferential
attachment mechanism described in [Barabasi & Albert, 1999]. Nodes are incre-
mentally added to the network and connect in a way that is preferentially biased
toward individuals who already have many connections (in the results below, 14

connections created per added node).

3The terms graph, vertez, and edge come from graph theory, whereas network, node, and link are often used
in network science — we will use these terms interchangeably.

4Matching the exact number of edges is not possible with these network generation algorithms, but reasonably
similar edge densities were obtained.
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(5) twitter - this network was extracted from data available via the public Twitter API.
It represents a small connected subgraph of the complete Twitter social network.
Starting with a random Twitter UID between 1 and 10 million, we used breadth-first
search to add the 999 nodes closest to our starting node, and all friendship links
(13,343 in this case) between these nodes. (Note: we define A and B as friends

when A “follows” B and B “follows” A)®.

Visualizations of the five networks are shown in Figure 5.1). The lattice and random
networks are not realistic social networks, but they are used for comparison purposes, as
well-studied examples of extreme order and disorder (respectively). The small-world (sw)
and preferential attachment (pa) networks have been shown to model certain types of social
and constructed networks fairly well [Barabasi & Albert, 1999; Watts & Strogatz, 1998]. The
sw network has a high level of clustering, while maintaining a short average path length. The
pa network exhibits a power law (or scale-free) relationship between the degree of nodes and
their frequency of occurrence. The twitter network provides an example from a real digital
social network. It displays a more skewed degree distribution than even the pa network,
indicating that a very small number of individuals have a disproportionately large number

of social connections.®

5.4.3. Strategies

In order to evolve solutions for the LV M P, we need to define the search space for optimal
strategies. In Section 5.3, we define a strategy to consist of two elements: the budget b, which

In this work, for simplicity and consistency, we used only undirected networks. However, this approach
ignores the potentially important effects of assymetric following relationships on Twitter, and future work
should include additional investigation using directed networks

6This may partially be an artifact of our subgraph extraction method, but the degree distribution of the
complete Twitter network is likely to be similarly skewed.
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Figure 5.1. Visualization of the random, lattice, small world (sw), preferential
attachment (pa), and twitter networks (listed in left to right, top to bottom
order). The size of each node illustrates its degree (number of neighboring
nodes) in the network.

we will operationalize as the fraction of the total network to be seeded, f,, and a priority
weighting function w(i). For the experiments presented here, we will assume no additional
cost ¢ for seeding a node beyond the loss in potential profit p that would otherwise have been
gained from a node if it had adopted, thus the budget cost b is reflected in the ineligibility to
adopt the product of the initial f; x n seeded nodes (where n is the size of the network). This
is a generally optimistic view of seeding costs, but may be realistic for digital media products,
where after the sunk development costs, the marginal production cost is near 0. A useful
weighting function for determining seeding priority requires information about individuals.
In this work, we will assume knowledge is available about several characteristics of nodes in

the network, illustrated by the following five simple weighting functions:
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Degree distribution by network type
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Figure 5.2. Degree distributions for each network, displayed on a log-log plot.
As the precise shape is dependent on binning choices, this histogram is meant
only to give a general sense of the degree distributions. The dotted lines serve
only to guide the reader between data points.

(1) degree - the number of neighbors of the target node normalized by the maximum

degree(i)

————_ Higher degree nodes influence more neigh-
mazx(degree)

possible value, i.e., wy(i) =
bors, directly encouraging more adoption.

(2) twostep - a measure corresponding to the number of nodes that are reachable within

twostep()

two steps of the given node (by following edges in the network), w;(i) = Tz (twostep)

An extension to the degree measure.
(3) average path length (apl) - the average number of steps from this node to any other

node subtracted from the maximum average path length of any node in the network
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max(apl)—apl(i)

maz(apl) " Nodes with lower average path length are

and normalized: w, (i) =
better connected to the entire graph, potentially encouraging adoption.

(4) clustering coefficient (cc) - 1.0 minus the fraction of neighbors of the node whose

neighbors are also neighbors of the target node, normalized by the highest clustering-

ce(i)
max(cc)

coefficient in the network, i.e., w.(i) = 1.0 — The lower the clustering
coefficient of a node, the less overlap there is among its neighbors, encouraging
wider adoption more quickly.

(5) random - the priority of an individual is determined randomly, i.e., w,(i) = U[0, 1].

(Note that each weighting function is normalized so that values fall within the range of [0, 1],
and higher values of w(i) will correspond to a better ranking in the priority queue, and that
ties will be broken randomly.) In past work on the GVMP, the degree and apl have been
shown to be important factors, while random seeding performs poorly [Kempe et al., 2003].

We hypothesize that better solutions (using the same available information) than these 5
simple strategies may be possible if the strategies are employed together. Thus we consider

weighting functions that use a linear combination of the strategies above:

Weomp (1) = aqwg (i) + awy (1) + aqwe (i) + acwe(i) + apw,. () (5.1)

where the a’s express the normalized weights assigned to each of these various characteristics
of the node. Finally, a linear combination might still not be expressive enough; what if it
were better to alternate seeding between two different strategies? For instance, first seed
the highest degree node, then the node with the lowest normalized path length, and back
and forth until the budget is exhausted. Therefore we expand our space to include “mixed

strategies”, consisting of two sub-strategies, along with an additional parameter for how
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often each substrategy should be used. This gives us our final w(i) function, which is:

Weomp,1 (1) ifx <p
w(i) = (5.2)

Weomp2(7)  otherwise
where Weomp,1 and Weomp2 are both of the form described in Equation 5.1 with their own
a’s, = is a random variable drawn’ from UJ[0, 1], and p is the parameter which specifies
the probability with which wWeompineq,1 15 to be used. Without loss of generality, we restrict
p > 0.5, meaning that weemp1 Will always be the primary sub-strategy and weomp 2 is the
secondary sub-strategy (chosen less often for seeding). Given this space, we can now describe
an individual in the population of our genetic algorithm. Each individual will specify weights
for all the « values described above (ten different values, five for each of the two strategies),
a p which is the probability with which the first strategy is used, and fs which is the fraction
of the population to seed. This results in 12 real-valued genes for each individual, which is
not especially many, yet the search space is too large for a brute-force approach. Also, given
the complexity and stochasticity of the fitness function, we speculate that the space will
be highly nonlinear, and there will be noise in the fitness determination (discussed below).

These factors motivate our choice of genetic algorithms for exploring this problem.

5.5. Implementation

In order to explore the LVMP, we constructed an agent-based model of it using NetLogo
[Wilensky, 1999]. A screenshot of this agent-based model is shown in Figure 5.3. In the
model, we first create a number of agents (1000 for the experiments presented herein), and
then we connect them according to one of the social network topologies described in Section

Tz is only drawn once per seeding choice
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Figure 5.3. The agent-based model of product adoption in a social network
setting, implemented in NetLogo. The parameters on the left side of the
model interface were held constant during a single GA search, whereas the
parameters on the right side of the interface (which control the initial seeding
strategy), were evolved by the GA.

5.4.2. Then we take the strategy currently being investigated, and we sort the list of all
agents using Equation 5.2. After this we select the fraction of agents at the top of this
priority queue using the f, specified by the strategy, and we seed each of these agents with
the product (setting their adoption state to true). Then at each time step of the model,
every agent who has not adopted the product runs the decision rule described in Section
5.4.1 to decide if they will adopt the product. Once all the agents have decided whether to
adopt the product in a particular time step, we record the total number of consumers who
have adopted and we begin the next time step. In our experiments, we make the simplifying
assumption that the product has some appeal to every agent in the population, thus the

simulation ends once all agents have adopted, and we calculate the NPV of the current
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run. Since the adoption heuristic is stochastic and the seeding strategy may be stochastic,
we run the simulation multiple times to more accurately calculate the expected NPV for a
given strategy. Specifically, an individual’s fitness is the average NPV from 10 simulations
(with different random seeds). While this Monte Carlo averaging cannot eliminate noise,
in practice we found that using 10 replicates sufficiently reduced the noise so the GA could
progress toward good solutions. Moreover, GAs are often successful despite the presence of
noise or uncertainty [Jin & Branke, 2005].

To automate the process of exploration, we have created a tool called BehaviorSearch
[Stonedahl & Wilensky, 2010a] that interfaces with NetLogo, and which can run a genetic
algorithm over the parameters of any NetLogo simulation. In this case, the parameters of
our model correspond to the seeding strategy to be evaluated. The genetic algorithm used
is reasonably simple: we generate an initial population consisting of 50 random individual
strategies, each containing 12 different genes as described in Section 5.4.3. The numeric
values that make up a strategy are discretized at a resolution of 0.01, and encoded as a
binary string, using a Gray code®.

The fitness of each individual is evaluated by decoding the binary string into the 12
strategy parameters, initializing the agent-based model with these parameters, and observing
the mean NPV from 10 independent replications of the simulation. Using these fitness
values, BehaviorSearch performs a standard generational GA [J. Holland, 1975] evolution
step (70% one-point crossover, 1% mutation rate, tournament selection with tournament size
3) on the population. This process is repeated for 200 generations. For both the ‘medium’

and ‘high’ virality scenarios, we used BehaviorSearch to conduct multiple instances (30) of

8We chose this representation since prior research suggests that Gray binary encodings are superior to
traditional high-order bit encodings [Caruana & Schaffer, 1988; Whitley, 1999], and our own preliminary
comparison experiments using real-coded genes did not appear advantageous to the Gray encoding.
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these searches on each of the five different networks (Section 5.4.2); this resulted in a total
of 2 scenarios x 5 networks x 30 searches x 50 individuals x 200 generations = 3 million
fitness evaluations. As each fitness evaluation requires averaging 10 runs, the grand total is
30 million simulation runs, which took approximately 11,000 hours (or 462 days®) of compute

time.

5.6. Results and Discussion

The first result we will examine is the GA’s performance across the different networks
types. Figure 5.4 shows the best-of-run performance for the GA on each network topology,
for the ‘medium virality’ scenario (performance trends for the ‘high virality’ scenario were
very similar). The GA finds fairly good solutions for each topology early on and then the
rate of improvement slows after that. The effect of noisy fitness evaluation is observable, in
that the actual NPV values (dotted lines in the figure, approximated by the average NPV
from 1000 simulation runs with the GA’s best individual) are considerably lower than the
best-of-run fitness values the GA reports (solid lines). This is because the GA only averages
10 simulation runs to determine fitness, and then it chooses the best from the population,
so the noise causes an overly-optimistic estimate of the best individual’s fitness. However,
individuals with the highest noisy fitness are likely to also have highest actual NPV, and the
correlation between the increase in fitness and the increase in the actual NPV confirms that
the GA does make real progress despite the noisy environment. Figure 5.4 also demonstrates
that there are different maximum NPV values achievable for each social network. In fact,
there is substantial variability in the capacity of these different networks to transmit/diffuse

information which directly affects NPV. In general higher NPV values were possible on the

9Less than a month in real-time because these searches were distributed across a computing cluster.
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GA performance (medium virality)

750
m
S 700}
©
[0}
wn
o
m
G 650}
o
>
T
>
% 600F..
¥—¥ random v-v (actual)
¢ lattice +--¢ (actual)
550} A—4A sw a--a (actual)|
B3 pa =& (actual)
o—@ twitter oo (actual)
5000 20000 40000 60000 80000 100000

# of simulation runs performed by the GA

Figure 5.4. GA progress (averaged across 30 searches) by network topology,

for the ‘medium virality’ scenario. GA’s reported best-of-run fitness (solid

lines) are compared with the actual NPV values (dotted lines), estimated by

1000 simulation runs, showing the effect of noise. (Error bars too small to

show.)
networks with degree distributions that were more skewed, or inequitably distributed (in
particular, the pa and twitter networks). The NPV values have a theoretical maximum
of 1000 (unattainable), which would correspond to every person spontaneously deciding to
adopt the product immediately, without any seeded individuals.

Before examining the evolved strategies, we will discuss results for the seeding budgets
(seeding fraction, f5) discovered by the GA. In all of the 30 search replications, the chosen
fs was always centered tightly around a specific value, which indicates a high degree of
confidence that the seeding fraction values that were found are indeed optimal. However,

the specific value of f, varied substantially between network types, and also slightly based on

the virality scenario (see Figure 5.5). In general, f, was lower for those networks with degree
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Optimal seeding budgets by network type
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Figure 5.5. The best seeding budgets found by the GA for each network type.
These are plotted against (on the x-axis) the Gini coefficient of the degree
distributions. The regression lines are not intended to propose a linear rela-
tionship, but merely to illustrate the correlation.

distributions that were skewed such that a small number of nodes had a disproportionately
large number of connections. Figure 5.5 displays this relationship quantitatively by plotting
the optimal seeding budgets (as discovered by the GA) against the Gini coefficient [Gini,
1912] of the network’s degree distributions, which is a standard measure of distributional
inequality ranging from 0.0 (flat equal distribution) to 1.0 (all connections concentrated in a
single individual). This relationship also mirrors how the maximum achievable NPV varies
by network type: essentially networks with uneven degree distributions have lower optimal
seeding budgets, and a higher payoff in terms of adoption (NPV). This result is sensible,
given that degree (wy) turns out to be very important component of seeding strategies for

all of the networks, as we will discuss below.
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The next question we investigated was what the best strategies discovered by the GA
looked like. For each of the 5 network types, in each of the 2 virality scenarios, Behav-
iorSearch provides us with the best strategies found in each of 30 GA searches. We present
here the results for the twitter network (which proved to be the most interesting case) on
the ‘medium virality’ scenario (see Figure 5.6). As shown, there is a fair amount of variation
among the GA’s best strategies. This is likely due to large plateau areas in the landscape
resulting in neutral evolution among a variety of different strategies, though it could also
indicate non-convexities in the space that make it difficult to search. Relating this back
to the behavior of the agent-based model, this result suggests that the rate of adoption
throughout the social network is not very sensitive to changes in some of the parameters
controlling seeding strategy. When using genetic algorithms to search the parameter-space
of agent-based models, the diversity of the parameters returned by the search can be in-
formative about the model, as discussed in the QBME framework (see Section 3.4.5). It
is worth emphasizing that the weight given to the “random” strategy () was very low in
all the best strategies found by the GA (except for in the lattice network, where no LVMP
strategy outperforms random because all nodes have identical characteristics), which shows
that choosing an informed strategy for seeding is important.

Our next inquiry was whether the GA’s best strategies gave better performance than us-
ing very simple strategies with the same available information. For each set of 30 strategies
generated by the evolutionary search, we determined the “best strategy” by testing them
with an additional independent 1000 simulation runs, and choosing the one with the highest
average NPV. As a baseline for comparison, for each network, we also determined an NPV

value by seeding using each of the basic component weighting functions individually: degree
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GA's 30 best strategies for 'twitter' (medium virality)
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Figure 5.6. Box and whisker plots showing the variation among parameters
for the best strategies that the GA found for the twitter network (‘medium
virality’ scenario). These strategies’ NPV performance varied slightly but was
consistently high (from 733 to 741). (Boxes show middle quartiles with median
marked red, and outliers as xs.)

(wq), two-step neighbors (w;), average-path-length (wy,), clustering-coefficient (w.), and ran-
dom (w,). On each of the five network types, wy proved to be the best basic strategy of the
five basic strategies. On four of the five networks, the best strategies found by the GA were
either only very marginally better, or not significantly different than wy, with the notable
exception being the twitter network, where the GA found a strategy that outperformed wy
by more than 19 NPV units, or 2.5% (p < 0.01 significance), in both the ‘medium’ and
‘high’ virality scenarios. A performance comparison is shown in Figure 5.7, and the GA’s
best strategies for the twitter network are displayed in Figure 5.8. Further testing showed
that in the best strategy for the ‘high virality’ scenario, the 1% use of a secondary strategy
had no impact, and in both ‘medium’ and ‘high’ scenarios, the small amount of «, (apl)
weighting included in these strategies was not significant in affecting performance. Thus,

the key strategic ingredient turned out to be the combination of high degree («y) with low
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clustering-coefficient (c..). This is interesting, since using w,. (cc) alone as a weighting strat-
egy performs worse than random seeding on the twitter network. The poor performance
of w,. comes from a sizable number of degree one nodes (only a single friend) in the twitter
network, which (trivially) have clustering coefficients of 0, but make poor choices for seeding.
These findings beg the question: what is special/different about the twitter network, that
was not captured in any of the 4 abstract generated social networks, which makes clustering
coefficient information important for seeding? Our hypothesis is that many of the highest
degree nodes (hubs) in this twitter network are closely linked with one another, but that
there are some important individuals in the network that are further away from the central
hubs, and serve as “brokers” to individuals or groups that are not directly connected to the
hub. The visualization of seed choices within the twitter network (Figure 5.9) supports this
explanation. Logically, it makes sense to seed individuals that are both reasonably high
degree, and also play the role of brokers in the network — and yet, the wy + w. combination
does not outperform pure w, on the other four networks. This might indicate that the four
artificial networks fail to capture an important component of real social networks.

One of our research questions was whether mixed strategies (i.e. alternating between
two sub-strategies) offered any advantages over pure (single) linear-combination strategies.
In our current results we do not see any benefit, as the GA was only able to find a strategy
that outperformed the simple w,; degree strategy in the twitter network, and that turned
out to be a pure strategy as well, only requiring a combination of wy and w,. to succeed.
However, this does not rule out the possibility that a mixed strategy could be useful with a
different network from the 5 investigated here, or with a different set of available network

characteristics.
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Figure 5.7. Best strategies found by the GA compared against the 5 basic
component strategies.
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Figure 5.8. Components of the best primary sub-strategies the GA found for
the twitter network. Secondary sub-strategies were basically unused: p; = 1.00
(‘medium’) and p; = 0.99% (‘high’).
All evidence so far suggests that LVMP strategies are robust across different “virality”
levels. In particular, the simple wy strategy performed fairly well across the board, and the

improved wy + w,. combination strategy for the twitter network was very consistent between

the ‘medium’ and ‘high’ virality scenarios. This is a hopeful sign for marketing managers, in
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a) pure degree b) pure cc c) GA's best strategy

Figure 5.9. Visualization of three seeding strategies on the twitter network.

Figure 5.10. Visualization of the alumni network used in the follow-up exper-
iment as a second empirically-based social network.

that results may be generalizable across different types of products, and (to a lesser extent)

across different social network structures.
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5.7. Follow-Up Experiment on the Alumni Dataset

To either support or dis-confirm our hypothesis regarding the difference between abstract
and empirical networks, we obtained a second empirical social network and performed a
follow-up experiment. In this case, our data source was a small online social networking site
for college alumni, with the largest connected component containing 938 users and 1399 links
between users. Each link represents a symmetric social tie, based on a threshold number of
combined communication interactions (email, chat, leaving a messaging, etc) going in both
directions between the users. A visualization of this network is provided in Figure 5.10.
Note that this network is significantly different from the twitter network, both in terms of
what it represents (discretized social interactions on a social networking site versus “mutual
followers” on a social media network) as well as the network properties. Primarily, the
alumni network is much less dense (average degree of 3.0, as opposed to average degree of
26.7 for twitter). The alumni degree distribution is highly skewed, although not quite as
unequally distributed as the twitter network (Gini coefficient of 0.44 versus 0.58 for twitter).

However, despite the differences, the best seeding strategies for the alumni network
(discovered by performing genetic algorithm searches similar to those described above) were
strikingly similar. Again the best strategy was a combination of weighting by degree and clus-
tering coefficient. Specifically, both the medium and high virality scenarios yielded around
two-thirds weighting by degree and one-third by clustering coefficient (the precise breakdown
for both cases is shown in Figure 5.11). Although these numbers don’t perfectly match the
twitter strategy, this follow-up investigation strongly corroborates two qualitative results
from the original study: 1) that using a combination of clustering coefficient and degree is

beneficial for selecting seeds for the LVMP, and 2) that there is something different about
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Figure 5.11. Components of the best primary sub-strategies the GA found for
the alumni network.

empirical networks (possibly due to community structure) which is not being captured by

the abstract network generation models.

5.8. Side Note on Search Performance

Our primary focus in these experiments was on obtaining good solutions (strategies) for
the LVMP domain, a task for which the genetic algorithm proved very effective. However,
there raises the further question: wvery effective relative to what? First, we note that an ex-
haustive factorial (grid-sweep) experiment of the parameters at this fine-grained resolution
is simply not feasible. In fact, even at very low resolution (say, 3 settings per parameter),
simulating that number of combinations would take about 50 times longer than a single
GA search at the fine resolution. However, simpler meta-heuristic search algorithms than
GAs exist, and it is valid to question whether GAs provide better performance in this task.
Arguably the most basic search algorithm is random search, which samples points uniformly
at random from the parameter space. Random search is quite comparable to factorial ex-
periments, since both are sampling uniformly throughout the space (although the factorial

approach enforces uniformity whereas random search obtains it on average). While we did
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not carry out extensive comparisons between different search algorithms’ performance, we
did compare the genetic algorithm against the baseline of random search (RS), and a hill
climbing (HC) algorithm (which is also an evolutionary algorithm in the broader sense of the
term, but unlike the GA it is not population-based and it does not use recombination). The
hill climber used the same mutation rate as the genetic algorithm, and it was configured to
randomly restart (from a new location in the parameter space) after 100 successive failures
to make uphill progress. The results for the high virality scenario (shown in Figure 5.12)
demonstrate that there was a clear (and statistically significant) benefit to using GAs in this
case study, compared to both HC and RS. For this task, the hill climber heuristic provided
only a marginal benefit over random search, whereas genetic algorithms outperformed both.
For the medium virality scenario, performance results (not shown) were very similar. (Fur-
ther comparisons of search algorithm performance on a variety of model exploration tasks

will be covered in Chapter 9.)

5.9. Future Work and Conclusions

In this case study we have only explored one potential adoption heuristic, but a wide
range of adoption heuristics exists within the space of contagion/adoption models [Dodds &
Watts, 2004]. The Bass-like model investigated here may be the best validated of extant viral
marketing models, but it could be useful to look at others, especially since the applicability
of adoption heuristics may vary according to product types, e.g., consumer durables vs.
software.

In our seeding cost we have assumed that every node costs the same amount to be
seeded, but it may be more expensive to seed an individual with more friends. Influentials

are influentials because people respect their advice, and thus they are not as easily swayed
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The landscape of best possible strategies will alter when different cost

functions for seeding are used, especially those that take into account the underlying network

characteristics, which are the same features used by the seeding strategies.

While we attempted to choose a representative set of social networks that covered a

range of network types, we found that our results were substantially different for our two

empirically-based networks (twitter and alumni) than for the theoretically-based networks.

This reminds us of the importance of working with empirical network data in addition to

abstract theoretical models.

It would be worthwhile to explore alternative network struc-

tures, with different degree distributions and different topologies, and most importantly,
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other empirical networks should be gathered and examined. Also, it is unclear how well
LVMP strategies generalize from a sampled sub-network to the whole network. Future work
should include examining how well the strategy derived for our small twitter network might
apply to the whole Twitter network, or to successively larger subgraphs, to see if the results
scale.

In conclusion, we have presented a novel problem (the local viral marketing problem),
constructed an agent-based model to simulate consumer behavior for this problem, and
showed that evolutionary computation provides a useful method for exploring this space and

discovering unexpected features of the problem and the social networks being investigated.
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CHAPTER 6

Case Study 3: Artificial Anasazi — Calibration and Sensitivity

Analysis

“Digging ... that is the occupation of an archaeologist, my dear.”
— ELIZABETH PETERS, Lord of the Silent

“Essentially, all models are wrong, but some are useful.”
— GEORGE Box

Academic fields of research are often stereotyped: mathematics is about writing proofs,
geology is about studying rocks, and archeology is about digging up ancient ruins. While
these stereotypes are based on practices which are prevalent in their respective fields, this
typecasting of scientists and the methods they use is harmful for two reasons: 1) because
outsiders form a constrained view of the rich variety of methods and tools employed within
the discipline, and 2) because practitioners of the discipline themselves may be influenced
by these cultural stereotypes, and thus limit their own research methodologies to conform
(either consciously or subconsciously) to these norms. However, there are many fine ex-
amples of iconoclastic research that helps to break down these stereotypes. One of these
is the well-known Artificial Anasazi simulation, in which a multidisciplinary team of ar-
chaeologists, anthropologists, paleoclimatologists, and computer scientists worked together
to create a model attempting to explain the rise and fall of a prehistoric society. This

simulation provides a “digging-free” method of exploring archaeological research questions.
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In this case, the Artificial Anasazi model was able to match the historical record in many
respects, but failed to match on one important point: the desertion of the valley. In this
sense, the model was “wrong”, because it did not reflect reality. However, the model was
still “useful” to the researchers, because it showed that the assumptions and simplifications
they used when creating the model were insufficient to produce the historical phenomenon,
and thus additional factors must have contributed. As George Box noted, all models involve

4

simplifications of the target phenomena, and are thus “wrong” in that sense. This type of
“wrongness” is actually part of what makes models useful, because if the model contained the
full complexity of the target phenomenon, it would provide less insight into which aspects
of that phenomenon were most important. However, there are other ways in which models
may be “wrong” — such as when there are errors (bugs) in the model’s code. In this chapter,
we will see an example of how search-based sensitivity analysis helped uncover a bug in a
previously published version of the Artificial Anasazi model.

In the previous two case studies, I was personally involved in the development of the
models being explored (that is, the Flocking Vee Formations model, and the Diffusion of
Product Adoption model). In contrast, this third case study uses an extant model (Artificial
Anasazi) that was created by other researchers, and applies the query-based model explo-
ration framework for model analysis. Specifically, we elaborate on the QBME framework
presented in Chapter 3 by investigating the use of genetic algorithms (GAs) for performing
two common tasks, parameter calibration and sensitivity analysis, which are related to the
evaluation of validity and robustness of agent-based models. In the calibration task, we
demonstrate that a GA approach is able to find parameters that are equally good or bet-

ter at minimizing error versus historical data, compared to a previous factorial grid-based

approach. The GA approach also allows us to explore a wider range of parameters and
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parameter settings. Previous univariate sensitivity analysis on the Artificial Anasazi model
did not consider potentially complex/nonlinear interactions between parameters. With the
GA-based approach, we perform multivariate sensitivity analysis to discover how greatly the
model can diverge from historical data, while the parameters are constrained within a close
range of previously calibrated values. We show that by varying multiple parameters within
a 10% range, the model can produce dramatically and qualitatively different results, and
further demonstrate the utility of sensitivity analysis for model testing, by the discovery of
a small coding error. Throughout this case study, we discuss some of the important issues

that can arise with calibration and sensitivity analysis of agent-based models.

6.1. Motivation

Agent-based modeling® is a technique that is becoming increasingly popular for many
scientific endeavors, due to the power it has to simulate complex adaptive systems in a va-
riety of natural and social environments [S. Bankes, 2002; Bryson et al., 2007; Goldstone &
Janssen, 2005; Wilensky & Rand, in press|. In an agent-based model (ABM), there are many
agents operating according to simple rules, but the resulting interactions between agents lead
to the emergence of complex aggregate-level behavior. The resulting aggregate behavior of
an ABM (especially one that aims at high fidelity to real-world systems), is often dependent
on a large number of controlling parameters. However, because of the complex nature of
the emergent patterns, and the nonlinear interactions between these parameters, the out-
puts of ABMs can rarely be characterized by simple mathematical functions, and formal
analytic methods usually prove insufficient [Edmonds & Bryson, 2004]. Furthermore, the

computational time required to run an ABM, together with the large number of parameters

ISometimes also referred to as multi-agent modeling, multi-agent based simulation, or individual-based mod-
eling
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often makes it infeasible to exhaustively compare all combinations of parameter settings.
Additionally, ABMs are predominantly stochastic in nature, leading to variability of results,
even when run multiple times with identical simulation parameters. As a result, the rigor-
ous analysis of agent-based models remains a challenging task, and proper methodology for
efficient analysis is still at a formative stage. In this work, we offer a case study about the
use of one particular approach, genetic algorithms (GAs), to accomplish two common model
analysis tasks: parameter calibration, and sensitivity analysis. For this case study, we chose

to examine the Artificial Anasazi model [Dean et al., 2000].

6.2. Background and Related Work
6.2.1. Artificial Anasazi model background

The Artificial Anasazi model [Dean et al., 2000; Axtell et al., 2002; Gumerman, Swedlund,
Dean, & Epstein, 2003] simulates the rise and fall of the prehistoric Kayenta Anasazi pop-
ulation living in Long House Valley, in northeastern Arizona from the years 800-1350 AD.
This agent-based model simulated the residential and agricultural practices of an artificial
society at the unit of individual households. It used geographic, rainfall, and various forms
of archaeological survey data to achieve a high degree of verisimilitude with respect to his-
torical reality. Moreover, after calibrating their model, the researchers found a reasonably
good correspondence between the model and the real history, for both qualitative spatial
settlement patterns, and population over time [Axtell et al., 2002].

A particular inspiration for the Artificial Anasazi model is to help understand the “fall.”
Archaeological records demonstrate that the Kayenta Anasazi abandoned the region around
1300 AD. However, the reason for this departure has been debated. One of the primary

findings from the Artificial Anasazi model is that environmental factors alone were not
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sufficient reason for a complete exodus; the valley could have continued to support a modest

population [Axtell et al., 2002]. However, for a full discussion of the Artificial Anasazi model,

we refer the reader to the original sources.

In this work, we analyze the replication of this model® by Janssen [2009], which was

implemented in the NetLogo modeling environment [Wilensky, 1999]. The model parameters

were hard-coded in Janssen’s replication, so we converted these variables into “explicit”

model parameters that are controllable via the model’s graphical interface (see Figure 6.1),

as well as making a few minor compatibility changes so the model would run in NetLogo

4.1.°

2Download available: http://www.openabm.org/site/model-archive/ArtificialAnasazi

3The exact model file we used is available at: http://ccl.northwestern.edu/ALTIAS/LHV_robustness

.nlogo.
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Several reasons motivate our choice of the Artificial Anasazi model for this case study.
First, whereas many agent-based models are “abstract” models, that demonstrate qualitative
trends or emergent phenomena, Artificial Anasazi is an example of a “facsimile” model in the
typology of agent-based models, which attempts to closely match historical data [G. Gilbert,
2008]. Second, it is a particularly well-known ABM that has received considerable attention,
both in the press (e.g., [Kohler, Gumerman, & Reynolds, 2005]), and from the agent-based
modeling community in general. Third, there have been several previous calibration efforts
using this model [Dean et al., 2000; Janssen, 2009], as well as published (univariate) sensitiv-
ity analysis [Janssen, 2009]. We will compare with these prior analyses as we discuss results
in the sections below.

Kohler et al. [2000] developed a similar ABM of the nearby Mesa Verde region during this
time period, and further elaboration of this model used the Cultural Algorithm framework
to embed (and evolve) social intelligence within the system [R. Reynolds, Kobti, Kohler, &
Yap, 2005; Kobti, Reynolds, & Kohler, 2006]. Despite the commonality of using evolutionary
algorithms, our work differs in that we are performing model analysis tasks externally to the

model, rather than incorporating evolution as a mechanism within the ABM.

6.2.2. Related methodological research

There are many ways of analyzing and checking for robustness in ABMs, including a variety of
approaches for calibrating model parameters and performing sensitivity analysis. [G. Gilbert,
2008; Wilensky & Rand, in press; Chattoe, Saam, & Méohring, 1997]. However, our present
work focuses on the use of genetic algorithms for these tasks.

This is not the first time that genetic algorithms have been suggested for parameter

calibration and sensitivity analysis of computer simulations. In particular, Miller’s [1998]
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seminal work on active nonlinear testing (ANT) proposed the use of metaheuristic search
algorithms for a range of tasks for computer simulations. Specifically, Miller demonstrated
how both calibration and a form of multivariate sensitivity analysis could be achieved on the
well-known World3 system dynamics (SD) model [Meadows et al., 1974], using either genetic
algorithms or a hill-climbing approach. SD models share several features with ABMs, such
as nonlinear interactions between parameters. However, SD models tend to model change
of aggregate (macro-level) quantities, whereas in ABMs macro-level dynamics emerge from
interactions between agents at the micro-level. Additionally, SD models are often determin-
istic, whereas ABMs are almost always stochastic in nature, requiring the examination of a
number of “trials” to evaluate the model’s behavior. As we will discuss later, the stochas-
ticity of model run results brings up several important questions about what it means to
perform robustness checking on an ABM. Moreover, we believe that the concepts of active
nonlinear testing deserve further investigation within the context of agent-based models of
complex adaptive systems.

Little work has been done in this area, with a few notable exceptions. Calvez and
Hutzler [2005] proposed the use of genetic algorithms for tuning the ABM parameters, and
demonstrated several parameter tuning tasks on a model of ant foraging [Wilensky, 1997a).
One of these tasks was a mock calibration task, which sought parameters that would yield
model output closest to data which had already been generated by the model. In contrast,
the Artificial Anasazi model represents a real calibration task, attempting to match real
historical data. Other cases of using genetic algorithms to search the parameter-space of
ABMs include: finding optimal seeding strategies for viral marketing in a social network
ABM [Stonedahl, Rand, & Wilensky, 2010] (see also Chapter 5), and discovering various

forms of emergent collective behavior in flocking ABMs [Stonedahl & Wilensky, 2011] (see
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also Chapter 4). We are not aware of previous instances of using genetic algorithms to

perform sensitivity analysis on an agent-based model.

6.3. Calibration Task
6.3.1. Task description & prior work

Broadly construed, the calibration of an ABM may refer to any process by which changes are
made to the model or its model parameters, such that the behavior of the resulting model is
closer to a desired behavior. In this chapter, we will more narrowly define calibration to be
the common case of searching for model parameter settings that yield output that is closest
to a specified reference pattern. (We will assume that only the model’s parameters may be
varied, and the model’s code is a fixed entity.) In the case of the Artificial Anasazi model, we
are following two previous calibration efforts [Dean et al., 2000; Janssen, 2009], though we
will primarily compare with Janssen [2009] because differences could exist between Janssen’s
replication and the original model, and also because the original authors’ calibration process
was not well documented.

Both previous calibration efforts chose the target reference pattern to be the time-series
of historical population data (number of households), and sought to minimize an error mea-
sure, which defined the “distance” between the simulated population history and the real
population history. Following [Dean et al., 2000], we will denote the historical population
data with a vector of length 550, X/*), where ¢ is the number of years since 800 AD, and
similarly denote simulated data with vector X7

Previous calibration efforts used multiple error measures of the difference between X/
and X[, specifically the three L? norms (L', L? and L*). However, prior work found

little difference between the choices of error function, and Janssen [2009] specifically found
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that both the L' and L? measures yielded the exact same optimal calibrated settings®. For
simplicity our work focuses on the L? measure, which is also called the Euclidean distance
between the vectors X7 and X!. Furthermore, minimizing the L? measure yields the same
result as minimizing the mean squared error when comparing two sequences (the absolute
magnitude of the error measures will differ, but finding parameters that minimize f(z) is
equivalent to finding parameters that minimize /f(z), for f(z) positive). In terms of the
QBME framework discussed in Chapter 3, we are first applying a group-level measure (to
get the number of agents present in the model at each time step), and then measuring the
difference between this information and our reference pattern (at each time step), and then
condensing those differences to a single number using the L? norm.

Janssen [2009] used a factorial experiment (grid-based sweep) for performing the cali-
bration. Due to computational constraints, Janssen varied only 5 parameters, with 7 to 9
choices for each parameter. In contrast, using a genetic algorithm (or other search-based)
approach to calibration makes it feasible to explore a much larger parameter space. Our cal-
ibration effort explores a 12-dimensional parameter space, with a wider range of parameter
values, and with higher resolution. For a comparison of the parameter calibration ranges we
used with the prior calibration effort by Janssen, see Table 6.1. Of course, there is no magic
bullet; the model can only be run so many times within a finite time limit. Given a the same
amount of computational time, the GA approach can only run the model with the same
number of different parameter-settings that the grid-based approach can. However, the GA
is a heuristic method that can adaptively explore more advantageous portions of a larger

parameter space. The intuition is that by harnessing the biologically-inspired mechanisms

“While this may have been true for this particular case, it does not hold in general, as we will see in Chapter
7



Janssen Range | GA Range
Parameter low-high (inc) low-high (inc)
HarvestAdjustment 0.54-0.7 (0.02) | 0.5-1.5 (0.01)
HarvestVarianceLocation | 0-0.7 (0.1)* 0-0.5 (0.01)
HarvestVarianceYear 0-0.7 (0.1)* 0-0.5 (0.01)
BaseNutritionNeed 160 100-200 (5)
MinDeathAge 26-40 (2) 26-40 (1)
DeathAgeSpan 0 (const) 0-10 (1)
MinFertilityEndsAge 26-40 (2) 26-40 (1)
FertilityEndsAgeSpan 0 (const) 0-10 (1)
MinFertility :095-.185 (.015) | 0.0-0.2 (0.01)
FertilitySpan 0 (const) 0-0.1 (0.01)
MaizeGift ToChild 0.33 (const) 0-0.5 (0.01)
WaterSourceDistance 16 (const) 6-24 (0.5)
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*varied in lock-step, as a single variance parameter
Table 6.1. Parameter ranges (low, high, and increment) for the GA calibration

task, compared with ranges explored in a previous grid-based calibration by
Janssen [2009].

of mutation, recombination, and natural selection, the GA will be able to evolve parameter
settings that minimize the error measure, and thus calibrate the model. Pragmatically, it
is often infeasible to perform calibration with fine resolution on a medium-to-large number
of parameters with a grid-based approach. For instance, an exhaustive grid-based search on
the parameter space defined for the GA in Table 6.1 would involve 6.5 x 10'6 combinations
of parameters, and would require a million processors each running for over a million years

to complete.

6.3.2. Search Method

The GA we employed was a standard generational genetic algorithm [J. Holland, 1975], with
a population size of 30, a crossover rate of 0.7, and a mutation rate of 0.05, using tournament

selection with tournament size 3.
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The value to be assigned to each model parameter was individually encoded in binary
using a Gray code.” The concatenation of binary sequences for all model parameters forms
the genome for an individual in the GA.

Full generational replacement is used, meaning that from each generation of 30 individ-
uals, 30 children are created to replace the parent generation. FEach child is created by first
using tournament selection to preferentially choose one or two parents with better fitness val-
ues, and then performing either sexual or asexual reproduction with the parent(s), followed
by per-bit mutation.

To evaluate fitness, the individual is decoded into the component parameter values, the
model is run 15 times with those parameters, and fitness function is calculated as the average
L? error value from these replicate runs. During tournament selection, individuals with lower
fitness function values (lower average error) are preferred. The choice to minimize the average
15 replicate runs follows from the previous calibration efforts [Axtell et al., 2002; Janssen,
2009], although we also examine the alternative of searching for the single best run in a
second follow-up calibration experiment. In terms of the QBME framework from Chapter
3, this is a choice about how/whether to condense information at the replicate (or repeated
model run) level. This choice turns out to have important implications, as we shall see.

To monitor/verify the progress of the GA, for each new “best-so-far” model parameter
values that the GA found, an additional 30 independent replicate runs were performed and
logged, providing an unbiased (and more confident) estimate of the average L? error for those

parameter settings. We will refer to this process as best-checking, and the verified value as

SGray codes create a smoother mapping between numeric values and binary strings than traditional “high-
order” bit encodings, and are thus generally advantageous for search space representations [Caruana &
Schaffer, 1988; Whitley, 1999].
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the checked fitness. (The GA does not make use of checked fitness information; rather, this
monitoring is extrinsic to the search process.)

Our GA implementation employed BehaviorSearch, which is a tool we have developed
that interfaces with NetLogo to automate the exploration of ABM parameter-spaces using
genetic algorithms or other meta-heuristic search techniques [Stonedahl & Wilensky, 2010a,

2011]. (BehaviorSearch will be discussed further in Chapter 10.)

6.3.3. Calibrationl5 experiment

Using the setup described above, we performed 5 GA searches for parameter settings that
yield the best average of 15 model runs. We will refer to this as the calibration-15 experiment.
Each search went for 100 GA generations, corresponding to running the simulation a total
of 45,000 times, with a small number of additional runs used for the extrinsic best-checking
process. A single GA search required approximately 16.5% of the 272,160 runs required by
the factorial-sweep approach employed by Janssen [2009], so the five searches together still
required less computation than the grid-base approach. To provide an idea of computational
running time, in total these searches required approximately 2500 CPU-hours (=~ 104 CPU-
days). Search time is dominated by the time required to run the model and the time spent
on genetic operations is inconsequential. Thus, in this chapter we will report computational
effort in terms of the number of simulation runs performed.

An examination of search performance of the five calibration-15 searches shows that one
of the five prematurely converged to a suboptimal solution, whereas four of the five reached
reasonably good levels of calibration (see Figure 6.2). The best parameter settings found
from calibration-15 experiment (as well as results from later experiments) are given in Table

6.2. These parameter settings yielded a mean L? error value of 891.4 (¢ = 65.8) from
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Figure 6.2. GA performance for the calibration-15 task.

running the model 30 times, which was lower than the mean L? error of 945.3 (o = 80.0) for
the Janssen calibrated settings. Both distributions of error appeared normally distributed
(Shapiro-Wilkes test, p < 0.01), and the finding that the GA’s mean error was less than for
the Janssen settings appeared statistically significant (Student’s t-test, p < 0.01). However,
we happened to decide to run the simulation 100 times with each of these settings, and
the picture suddenly changed.® With 100 replicate runs, the mean L? error for the GA
parameters was 943.1 (0 = 324.5), and the mean L? error for the Janssen settings was 930.6

(0 =194.4); the GA now appeared to have found worse (less calibrated) parameters.

6We include this vignette partially as a reminder that statistics must be interpreted with care, and that the
distributions of output variables from multi-agent-based simulations may be abnormal, irregular, or generally
unexpected.



197

Error Distribution for Calibrated Settings

Il GA calibrated

40 Janssen calibrated |1

[\ w
o o
T T

frequency (out of 100 runs)

o
o

0 1000 1500 2000 2500 3000
L2 error measure

Figure 6.3. A histogram displaying the distribution of error values across mul-
tiple runs, comparing the GA calibrated settings with the calibrated settings
previously found by Janssen [2009).

This led us to examine the distribution of error among the 100-replicates for each case
(see Figure 6.3), which turned out to be non-normal. (In terms of the QBME framework, we
are now discussing the impact of diversity at the level of the fitness function across multiple
repeated model runs.) In general, the GA-provided settings usually offer a (slightly) better
match with historical data, but there are a few high-error outliers (that raise the mean error
value), and these outliers appear more likely with the GA’s settings than with Janssen’s.
These outliers are apparent in the visual comparison of the 100 GA and Janssen simulated
histories against the historical data (Figure 6.4). The median L? error for the GA was 860.4,
compared to 893.8 for the Janssen settings, and a randomly chosen run with the GA settings
is almost twice as likely to have better performance than one chosen from the Janssen settings

(65.9% vs. 34.1%).
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The trade-off present here may be described in terms of confidence versus accuracy. Given
three hypothetical choices, which of the following represents the best-calibrated parameter

settings for an ABM?

(1) simulated results are always somewhat close to historical
(2) simulations are often quite close, but occasionally far off

(3) simulated results occasionally match historical data perfectly, but are usually far off

Answering this question is difficult, particularly in facsimile-type models of historical events,
since there is only one recorded version of history to compare against (and even for that,
the data may be uncertain). We believe that this question warrants explicit consideration
whenever a model calibration is performed, and that the choice of distributional comparison
may require estimates of the likelihood of history having unfolded in the way that it did,
and consideration of plausible alternative histories. For the most part, these estimates and
theories will be subjective in nature, which is why it is especially important that they are
explicitly addressed during the calibration process. The choice of distributional comparison
for calibration will also depend partially on the goals for building the model.

In some cases, one distribution of error may dominate another, in the sense that every
error value in one distribution is lower than some corresponding error value in the other
distribution. In this situation, choosing the “better calibrated” settings is simple, and com-
paring the mean values is sufficient. However, we would like to emphasize that because of
model stochasticity, calibrating ABMs requires comparing one distribution with another,

rather than a single result. The issues we have preliminarily touched on here are part of
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a potentially much deeper discussion, which is outside the scope of this case study; in fu-
ture work we plan to formulate a more rigorous and general framework for addressing these
aspects of calibration and sensitivity analysis in ABM.

In the case of the Artificial Anasazi model, the GA’s distribution of error seems slightly
superior to us than Janssen’s, given that it usually provides a closer match, and it seems
reasonable that in some alternate histories an unlikely adverse chains of events (e.g., poor
harvests for many years in succession) could have caused the population’s trajectory to be
significantly lower (as seen in Figure 6.4). However, the differences in error values are small
and one could certainly argue that both the GA’s and Janssen’s settings are equally well-
calibrated; both recreate some features of the historical trajectory while failing to produce
others. The fact that the GA was searching a significantly wider range of parameters than
Janssen’s grid-based approach, yet was not able to find substantially better calibration,
suggests that previous calibration efforts on this model were not missing important fruitful
areas of the parameter space. However, as the 5 GA searches were only able to cover a small

region of the extremely vast search space, this evidence is not necessarily conclusive.

6.3.4. Calibration-1 experiment

The results of the previous experiment led us to wonder how different the results of model
calibration would be if we were instead seeking parameters that yielded the single best
run, rather than the smallest average error. Investigating this is interesting for several
reasons. First, it might discover settings that occasionally match the historical data, even
if average error is poor. Second, running the model once is much quicker than running the
model 15 times, and although it gives a noisier signal about calibration error, the GA might

be able to use this faster noisier fitness function to lead to parameters that provide good
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Janssen GA GA GA GA
Parameter calibration | calibration-15 | calibration-1 | sensitivity-15 | sensitivity-corr
HarvestAdjustment 0.56 0.67 0.64 0.6104 0.5264
HarvestVarianceLocation 0.4 0.47 0.44 0.436 0.436
HarvestVarianceYear 0.4 0.23 0.5 0.424 0.408
BaseNutritionNeed 160 200 185 144 164.8
MinDeathAge 38 37 40 40 41
DeathAgeSpan 0 3 10 1 1
MinFertilityEndsAge 34 36 29 37 31
FertilityEndsAgeSpan 0 9 5 3 0
MinFertility 0.155 0.13 0.17 0.16585 0.14105
FertilitySpan 0 0.09 0.03 0.0155 0.0031
MaizeGift ToChild 0.33 0.31 0.47 0.3102 0.35310
WaterSourceDistance 16 10 11.5 17.44 16

Table 6.2. Optimal parameters found by the genetic algorithm for both the
calibration and sensitivity analysis tasks, compared with the parameter set-
tings from the previous grid-based calibration by Janssen [2009].

average performance as well. Because the calibration-1 experiment requires fewer model runs
than the calibration-15 experiment to evaluate fitness, we were able to increase our genetic
algorithm settings to use a population of 90, running for 200 generations, for a total of 18000
simulation runs. We also increased the mutation rate to 3%, as a larger population can
generally support a larger mutation rate. Similar to before, we used a best-checking routine,
this time recording the minimum error from 30 independent replicate runs, each time the
GA discovered a new “best.” Again we ran 5 searches with these settings, to reduce the risk
of reporting anomalous results.

We took the parameter settings corresponding to the lowest checked fitness L* error
(see Table 6.2), and ran the simulation 100 times with those settings. The lowest L? error
obtained from this was 733.6, which is substantially lower than the 823.5 error that was
the best from the 100 runs with Janssen-calibrated settings. These single best runs are

compared in Figure 6.5. However, the average error for these parameter settings was 962.4,
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Figure 6.5. The single best runs found from 100 replicate runs with the settings
from Janssen (L? error = 823.5) and the calibration-1 experiment (L? error
= 733.6), compared with historical data.

which is somewhat larger than the mean error for Janssen or calibration-15. Essentially, the
best calibration-1 parameters cause more variation in model run results (compare Figure 6.6
with Figure 6.4), which can sometimes lead to a better historical fit, but provides a worse
fit if averaged.

This contrast highlights a potential problem with calibrating to get the lowest average
error. In order to obtain the absolute lowest average error, every model run would have to
be identically equal to the historical data. In general, such a result would indicate a very
unrealistic model, where only one path through history is possible. Over the past century,

our increased recognition of chaos theory and the effects of path dependence in the social
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Figure 6.6. Simulated population histories from 100 model runs with the best
calibration-1 parameters, plotted against historical data.

science domain (e.g., [Brown et al., 2005; Batty, 2007]) strongly suggests that small changes
in the initial conditions, or chance events early in the process, should significantly influence
the historical trajectory. In other words, while a well-calibrated model should be able to
produce something resembling the historical data, at least some variation in outcomes is
a desirable trait for model credibility. Accordingly, one could argue that the calibrate-1

experiment provides the best calibrated settings.

6.4. Sensitivity Analysis Task

Sensitivity analysis is a particularly important task, since the robustness (or lack of ro-
bustness) of a model with respect to changes in model parameters provides considerable
information about the complex system being modeled. However, despite its importance, it
is also a practice that is too often neglected by ABM practitioners; if it is performed at all,

it often covers only a few parameters, or neglects potentially nonlinear interactions between



204

parameters. Some form of sensitivity analysis is a necessary part of ABM verification and val-
idation [G. Gilbert, 2008], as well as replication [Wilensky & Rand, 2007]. However, the term
“sensitivity analysis”, does not refer to a single precise technique or methodology; rather,
the term is broadly applied to class of related techniques that share the goal of determining
what factors cause model results to change, and with what magnitude [Chattoe et al., 1997].
In this chapter, we focus only on the specific approach of varying model parameters in the
vicinity of some “default” parameter settings. In the case of the Artificial Anasazi model,
a partial univariate sensitivity analysis has already been performed. Specifically, Janssen
[2009] examined the effect of singly varying each of the five variable parameters from their
calibration (HarvestAdjustment, HarvestVariance, MinDeathAge, MinFertilityEndsAge, MinFer-
tility) while holding all other parameters constant (fixed at the previously calibrated values).
While this approach does provide insight into the model dynamics near the calibrated point,
we are interested in the related question of how robust the model is to changes in multi-
ple parameters simultaneously. Specifically, if model parameters are each constrained to be
within a relatively small range of the calibrated values, how far “off” can the model’s output
be? Exploring this question is one form of multivariate sensitivity analysis, as discussed in
Miller’s [1998] work on Active Nonlinear Testing. Similar to Janssen’s calibration approach,
a grid-based factorial parameter-sweep could be employed for small numbers of parameters
being swept at low-resolution. However, again we propose an alternative approach of us-
ing a genetic algorithm to evolve parameter settings that yield results that are significantly

different from the model’s desired outcome (i.e. the historical data).
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6.4.1. Sensitivity-15 experiment

Our first sensitivity analysis experiment was to search for parameter settings, within a small
margin of the calibrated settings from Janssen [2009], that would yield the highest average
L? error measure across 15 runs. Following Miller [1998], we chose to allow each parameter
to range within +£10% of its calibrated value. Notice that we only have to change two
small things in order to switch from performing model calibration to sensitivity analysis:
we restrict the search space to a narrower range for each parameter, and we attempt to
maximize (rather than minimize) the same error function (L?* distance) used for calibration.

Mirroring the calibrate-15 experiment, we used the same GA settings, and performed
5 searches, each of which ran the model a total of 45000 times’. All five of these searches
found parameter settings yielding L? error values that were more than 4 times greater than
the calibrated Janssen settings error (930.6). For the best settings found (again, listed in
Table 6.2), the average L? error was 3918.6 (o = 249.7); Figure 6.7(a) visually displays 100
simulated histories with these settings. While our experiment differs in flavor from that
of Janssen [2009], it is still instructive to compare our results with that of the univariate
sensitivity analysis previously performed. Specifically, we note that when varying each of 5
parameters singly, the highest relative L? error gain was 50% (within the +10% parameter
range), and even the sum of the highest errors for each parameter is only around 150%,
which is still small compared with the > 300% increase in error discovered through the GA’s
multivariate search. This disparity is due in part to the GA manipulating more parame-
ters to which the model is sensitive (such as BaseNutritionNeed), and also to the nonlinear

interactions between parameters.

"However, running time in hours was over 80% longer, as these runs tended to create a much greater number
of agents
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Figure 6.7. Simulated histories from 100 runs with the best sensitivity exper-
iment settings, compared with historical data.
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Figure 6.8 displays the distribution of best parameter values found by the GA in each of
the 5 searches that cause such a dramatic discrepancy from historical data. (In terms of the
QBME framework from Chapter 3, we are now discussing diversity at the level of parameter
settings that resulted from the search process.) The different GA searches sometimes found
different settings from one another, but there are still some clear trends in the results. In
particular, they consistently discovered high values for HarvestAdjustment, HarvestVariance-
Location, MinFertility, and MinFertilityEndsAge, while they unanimously selected the lowest
possible BaseNutritionNeed value in the range. In other words, the model is particularly sen-
sitive to these parameters. For the most part, these parameter settings match our intuitions.
In order to achieve an extremely large population, there should be more bountiful harvests,
a higher reproduction rate for creating households, and low nutritional requirements per
household. The other parameters’ values are relatively scattered throughout the range, and
it is apparent that it is not necessary for them to be assigned a specific value in order to
achieve large error.

There was, however, a curious trend regarding the two HarvestVarianceX parameters,

which raised two questions:

(1) Why does an increase in the variation of crop yield coming from different fields
(HarvestVarianceLocation) result in larger populations?

(2) Why is yield variation over time (HarvestVarianceYear) not similarly correlated?

Addressing question 1, we first confirmed this was not a fluke by running the model 100 times
with the best sensitivity-15 settings, except using the lowest HarvestVariancelLocation value in
the £10% range (0.36), and we found a more than 10% decline in L? error (t-test, p < 0.01).

Next, we examined the model code, and discovered that the HarvestVariancelLocation was
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affecting agricultural quality as the variance of a normal distribution centered around 1.0,
but that agricultural value was not allowed to be negative, so was thus truncated at 0. As
a result, increasing the variance also increases the distribution’s mean value. The relevant

excerpt from the NetLogo model code is as follows:

ask patches [
set quality ((random-normal 0 1)
* harvestVariancelLocation) + 1.0

if (quality < 0) [set quality 0]

This explains question 1 from above, and it stems from a reasonable modeling choice,
although the outcome shows that one must take care in the interpretation of model pa-
rameters. To answer question 2, we looked for where (HarvestVarianceYear) was used in
the code, only to find that it wasn’t. Instead, HarvestVarianceLocation was also affecting
variation over time; whereas HarvestVarianceYear was initialized and then never referred to
again. This was clearly a bug in the Artificial Anasazi model,® which we had uncovered as
a result of performing this sensitivity analysis. Admittedly, a careful code audit, or other
forms of analysis, could also have helped find this bug. Nonetheless, our GA-based multi-
variate sensitivity analysis provided the information that led to the discovery of the bug in
this published model, which lends further support for the utility of this approach.

From the results, it seems possible that it would be sufficient to only test the extreme

settings (+10%, and —10%), rather than checking all values in between. With 12 parameters,

8We reported this issue in personal correspondence with the model author. We also note that this minor
error did not affect any of the results previously obtained in [Janssen, 2009].
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Figure 6.8. Distribution of “best” parameter settings found in each of the 5
GA searches of the sensitivity-15 experiment. Actual parameter values are
displayed as solid circles, while the boxes and whiskers display the middle 3
runs, and full extent of the data, respectively. The center x-value in each plot
corresponds to the Janssen calibrated settings.

this would only require 2'2 = 4196 combinations of parameter settings, which is a feasible
number to enumerate. This may often be the case, but in general one cannot be sure that
nonlinear interactions between parameters would not cause the optimal/extreme results to
fall elsewhere in the viable range. For models with very large numbers of parameters, and
small viable ranges for each parameter, allowing only 2 or 3 choices for each parameter may

be prudent, together with a genetic algorithm approach.
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We also performed a sensitivity-1 experiment, using similar settings as the calibration-1
experiment, searching for parameters that would cause the largest L? error for a single model
run. However, the results were very similar to the sensitivity-15 experiment, and are thus

omitted for the sake of brevity.

6.4.2. Sensitivity-corr experiment

Although the sensitivity-15 experiment produced results of a different quantitative mag-
nitude than results from calibrated values, they were still qualitatively similar (see Figure
6.7(a)). We were interested in whether we could use a different error measure for a sensitivity
analysis to find simulated histories with a different general shape. As a measure for quali-
tative difference, we chose the Pearson product-moment correlation coefficient (r) between
the simulated (X}) and historical (X[*) population sequences. As an example, the single run
with the largest L? error value (4524.3) from the sensitivity-15 experiment still had a quite
high positive correlation (r = 0.83) compared with the historical data.

Using a genetic algorithm with the same settings as the sensitivity-1 experiment (pop-
ulation 90, 200 generations, 3% mutation), we ran 5 searches for parameters (within the
+10% range) that would yield the smallest correlation coefficient (r) value. The best (lowest
correlation) parameter settings are listed in Table 6.2, yielding an average correlation of
r = —0.18. Whereas the largest L? error measure was achieved by an unrealistically large
Anasazi population, the smallest correlation was achieved by population decline and extinc-
tion, which are also consistently achievable within the £10% range of calibrated values. Of
100 runs (shown in Figure 6.7(b)) using the best parameters for non-correlation, the lowest
correlation for a single run was —0.6, which had a relatively long lingering decline with the

population reaching 0 in the year 994 AD. Interestingly, because of our chosen measure, slow
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population declines cause greater negative correlation with the data than when the popula-
tion dies out almost immediately. This led the GA to find runs that were on the brink of
extinction, and thus out of the 100 runs, there are a few runs that are still highly correlated
with the historical data (the closest matches in 6.7(b)). Though the Pearson correlation-
coefficient was reasonably effective in this case for finding qualitatively different runs, it is
worth emphasizing that it may not always be appropriate. Developing a variety of error
measures for search-based sensitivity analysis that correspond well with human intuitions
about what constitutes qualitatively different behavior of a system is a ripe area for future

work.

6.5. Conclusions

To summarize, we have presented a series of 5 experiments using genetic algorithms
to perform tasks relating to ABM calibration and sensitivity. In the calibration tasks, we
demonstrated that the genetic algorithm could find calibrated parameters that were better
(in some respects) than parameters previously discovered in a grid-based sweep. This process
brought up important aspects of calibration (judging distributions of error, rather than sim-
ply mean error), which researchers should attend to during model analysis. In the sensitivity
tasks, we demonstrated that the genetic algorithm approach can consistently find parameter
settings that yield both dramatically and qualitatively different results. Additionally, the
multivariate sensitivity analysis highlighted several instances of anomalous model behavior,
leading us to discover a bug in the Artificial Anasazi model’s code. This emphasizes the
utility of sensitivity analysis as a technique for model testing and verification. Several of the
issues about search-based robustness-checking that arose from this case study deserve fur-

ther consideration, some of which will be discussed in later chapters. For instance, Chapter
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7 will dig a little deeper into the trade-offs between using different error measures for cali-
bration as the fitness function for genetic algorithms, Chapter 8 will investigate one aspect
of how model stochasticity (leading to noisy fitness functions) impacts search performance,
and Chapter 9 will provide performance comparisons for the effectiveness of different search
methods. However, some important outstanding questions remain: how should comparisons
best be made across spatial and temporal data?® what is the most appropriate method
for comparing distributional outcomes against single-instances? how should models be cal-
ibrated using higher-dimensional or network-based data sets? A complete methodological
framework for addressing these questions is outside the scope of this document, but it is an
important area for future work in the calibration and sensitivity analysis of ABMs. However,
the results of the present study of the Artificial Anasazi model are both thought-provoking
and promising, and it is our hope that ABM practitioners will adopt similar methods to

improve the rigor of model analysis.

9However, there has been some recent progress in this area — see, e.g., [Brown et al., 2005].
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CHAPTER 7

Case Study 4: Online News Consumption — Calibration

Comparison

“Today’s scientists have substituted mathematics for experi-
ments, and they wander off through equation after equation, and
eventually build a structure which has no relation to reality.”

— NikoLA TESLA (1934)

“Not all those who wander are lost.”
— J.R.R. TOLKIEN, The Fellowship of the Ring

The paired quotations above are illustrative of a certain yin yang relationship that ex-
ists in scientific modeling — a balance between the elegance and simplicity of theory and the
practicality of empirical data and experimental evidence. It is important to ground modeling
research with real-world data, while still retaining the freedom to “wander” through various
simulation microworlds that one may construct that are simpler or more elegant, to gain
insight through exploration of isolated aspects of the phenomena. Fortunately, agent-based
modeling does have some advantages in this regard over the equation-based modeling par-
adigm that Tesla maligned. This is because one can often map more directly between the
agents being modeled and the real-world entities they represent, whereas in mathematics the

equations can quickly become very abstract and difficult to interpret in the target domain.
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These quotations also seemed apropos for second reason because this chapter involves
modeling wandering itself — specifically, modeling the behavior of consumers of online content
as they wander (lost or not) from one website to another, reading news stories. However,
the specific topic of the case study is less important than the bigger picture, which is about
investigating the relationship between calibration measures and their corresponding fitness
functions when employed by a genetic algorithm to search the parameter space. Agent-
based models can be manipulated to replicate real-world patterns, but finding parameters
that achieve the best match can be difficult. To validate the model, the real-world dataset is
often divided into a training set (to calibrate the parameters) and a test set (to validate the
calibrated model). The difference between the training and test data and the simulated data
is determined using an error measure. In the context of using an evolutionary computation
technique to calibrate model parameters, the error measure also serves as a fitness function,
and thus affects evolutionary search dynamics. This chapter surveys the effect of five different
error measures on both a toy problem and a real world problem, using an agent-based model
to match online news consumption behavior. We use each error measure separately for
calibration on the training dataset, and then examine the results of all five error measures
on both the training and testing datasets. We show that sometimes certain error measures
serve as better fitness functions than others, and in fact searching for one measure may result
in better calibration (on a different measure) than searching for that measure directly. For
the toy problem, Pearson’s correlation measure dominated all other measures, but for the

more complex real-world problem no single error measure was Pareto dominant.
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7.1. Motivation

Agent-based models (ABMs) and other modern computational simulations tend to pro-
duce a large quantity of data, which is often longitudinal in nature. Moreover, in order to
properly utilize these models, since they are stochastic, it is often necessary to replicate runs
of the same parameter settings to create multiple datasets so that the statistical variance
present in the stochastic nature of the model can be captured [North & Macal, 2007]. Often
the goal is to show that these models can simulate real world behavior, a process known as
validation [Conway, Johnson, & Maxwell, 1959]. However, in order to match model data set,
M, against real world data set, R, there is often a large space of parameters, P, that needs
to be calibrated so that the simulated data best matches the real data, but choosing the set
of parameters that will maximize this match can be difficult. In order to identify the best set
of parameters, the real-world data set is often divided into two subsets: (1) the training set
Rirain, and (2) the test set Ryes. Ideally, Ryqqin and Ryes; will both be equally representative
of the phenomena being modeled and collected under similar real-world conditions. However,
these two datasets may vary in a number of different ways, such as the size of the dataset,
the environment that they were collected in, etc. Thus, we must specify an additional set of
environmental variables, F, for each scenario: Fj..;, and F.. The problem of calibration
can now be posed as a straightforward search problem: Identify the set of parameters P*
such that some error measure €(Ryqqin, M (P*, Eirqin)) is minimized. Once the model has
been calibrated using P*, the results can be validated by comparing the model data to the
test set using, €(Ryest, M (P*, Eiest)), if this result is less than some threshold, T, then the

model is said to be validated.
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Many techniques can be used to search for the parameter set, P*, but if the problem
contains many different variables that are interdependent, then an evolutionary computa-
tion approach is often suitable. In order to conduct this search, a population of potential
parameter sets is generated and the fitness of each individual, P;, is measured using the
error measure, €(Ryqin, M (Pi, Eirqin). In the context of an evolutionary algorithm, the error
measure, €, becomes the fitness function, and so choosing the appropriate error measure is
critical not only to choosing a good set of parameters, but also to the evolutionary process.
As is the case of many evolutionary computation problems, the question then becomes which
fitness functions to choose [D. E. Goldberg, 1989; Ma & Abdulhai, 2002]7? The choice of the
fitness function is important for two different reasons: (1) it will affect the performance of
the evolutionary algorithm, and (2) because it is the basis for calibrating the model and
judging the validity of the model.

To investigate the effect of an error measure on calibration and validation, we examine
a variety of error measures in the context of a real-world problem concerning online news
consumption. Specifically, we seek to discover the extent to which the underlying hyperlink
network between news sites can explain individual consumer browsing behavior, ignoring
content-specific issues and focusing solely on structural network properties and positions
of websites in the network. Such a model could be used to investigate how changes in
online news business models would affect consumption, e.g., whether the current push to
implementing paywalls' around news sites will dramatically affect network traffic.

We begin this chapter by briefly describing related work on the calibration of agent-

based models and online news consumption. We will then discuss the news consumption

1“VVhy the NYT Will Lose to HuffPo”, Felix Salmon, Reuters, Feb. 8, 2011. http://blogs.reuters.com/
felix-salmon/2011/02/08/why-the-nyt-will-lose-to-huffpo/
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data that we analyzed, the model that we built and a “toy problem” which we used in
our analysis. Next, we discuss five candidate calibration/error measures and the general
calibration procedure, followed by a description of our data set, which consists of clickstream
data from thousands of individuals consuming news on the Internet. After this, we will go on
to discuss the implementation of our agent-based model (ABM) of consumer behavior. We
first examine the results of using different error measures on the toy problem, and then on
the real world dataset, and summarize our findings. Finally, we examine the use of different
error measures using the real-world dataset (for both training and testing), and summarize

our findings.

7.2. Related Work

Agent-based modeling is an increasingly popular form of computer simulation, wherein
a set of behavioral rules are specified at the individual level, the execution of which results
in trends emerging at the system/aggregate-level [North & Macal, 2007; S. Bankes, 2002;
N. Gilbert & Troitzsch, 2005; Wilensky & Rand, in press|. Along with other simulation
techniques, it often requires the specification of a large number of parameters that affect
both individual behavior and environmental factors in the simulation, and machine learning
approaches, such as genetic algorithms (GAs) are often brought to bear in these circum-
stances. While GAs [J. Holland, 1975; D. E. Goldberg, 1989] have long been used to explore
computer simulation parameters (e.g., [Weinberg, 1970]), there is an increasing amount of
research using GAs in conjunction with agent-based models. For example, Midgley et al.
[2007] used a GA to explore an ABM of a consumer retail environment, and Stonedahl et al.

[2010] (see also Chapter 5) demonstrated the use of GAs for searching for ABM parameters
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in the context of discovering good viral marketing strategies. Specifically regarding calibra-
tion using GAs, Miller’s [1998] seminal work on “active nonlinear testing” (ANT') proposed
the use of nonlinear optimization techniques (including GAs) for a number of important
model analysis tasks, including calibration. Miller [1998] demonstrated these ideas using a
deterministic equation-based systems dynamics model. In contrast, here we are attempting
to calibrate a stochastic agent-based model that we have developed, and more importantly,
are investigating the use of a variety of calibration measures and their impact on the GA’s
performance. Calvez and Hutzler [2005] used a GA for an artificially constructed calibration
task in an ant colony foraging ABM, attempting to match previously simulated data, using
Euclidean distance (L? norm) to measure error. In the preceding chapter (Chapter 6), we
demonstrated the effectiveness of GAs for calibrating and analyzing the parameters of the
Artificial Anasazi model. That work focused solely on the L? norm for calibration, for the
sake of matching previous grid-based (factorial) calibration experiments [Janssen, 2009] on
that same model, which showed little difference between the L', L2, and L™ error measures.
In this chapter, we show that the choice of error measure can make a difference in the both
the parameter settings (P*) that result, as well as the GA’s performance.

The model we are calibrating is in the application area of online news consumption.
There have been several surveys of how people consume news [Althaus & Tewksbury, 2000;
Dutta-Bergman, 2006] such as the Pew Internet & American Life Project’s recent report
[Purcell, Rainie, Mitchell, Rosenstiel, & Olmstead, 2010], but these surveys describe stated
preferences and not revealed preferences. Also, the surveys generally do not provide prescrip-
tive guidelines about how users might react to changes in the content news world. Tewksbury
[2003; 2005] examined both survey and URL data, but was primarily focused on what topics

people choose to read about and not how they consume news. Our work fills this gap by
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empirically examining not just what consumers read, but how consumers browse, and the

connection between browsing behavior and the underlying hyperlink network.

7.3. News Consumption

A brief description of the purpose of the model will help motivate its use as an example.
Before the growth of the internet, newspapers, essentially, had a geographic monopoly on
the area that they served. However, with the development of the web and hyperlinked struc-
tures of content, every newspaper had to compete with every other newspaper in existence.
As a result, they had to develop new revenue models, such as paywalls, public-sponsored
journalism, or consortiums of independent journalists, in order to deliver the same level of
quality they were able to deliver in the past. Unfortunately these new models are not based
on rigorous models of consumer behavior. Before a newspaper can understand the impli-
cations of these new revenue models it is first necessary to understand how users consume
news online so that projections can be made as to the effect of different revenue models.

Besides being a highly topical and relevant research area, this domain also has benefits
for investigating the effect of calibration measures because there is a large quantity of real-
world data, it is embedded in a distributed network, and the question revolves around finding
the parameters of an individual-level model that will produce emergent-level outputs that
resemble the real-world patterns. Additionally, the large amount of temporal data available
allows us to calibrate the model in one time period and then test the results on a separate

dataset.
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7.3.1. The Data

The data used for this analysis was clickstream data from comScore. This dataset con-
tains approximately 2 million page views per month, from a random sample of a thousand
internet users during the year 2007. We divided this data into two smaller datasets: one
containing only January browsing (for training) and one containing only December browsing
(for testing). Among other information, these datasets contain the referral domain and the
destination domain for every link clicked by each of the tracked users. For each of the two
datasets, we created a weighted directed graph where each node (vertex) represents a web
domain (e.g., nytimes.com), and a directed edge was placed between any node A and node
B if there were any hyperlinks clicked to travel from domain A to domain B. Each edge was
also assigned a weight, based on the amount of traffic (number of hyperlinks clicked) from
one site to another.

However, since our focus is on news consumption, rather than web browsing in general,
and because modeling the whole web is infeasible, we further filtered the dataset based on
a list of 455 domains identified as news top websites. Specifically, we included any site
that was in the top 100 news category from Alexa traffic rankings, combined with a list
created by Hasan et al. [2010] of the top news websites and blogs from the time period.
We kept only those edges for which the source and destination nodes were both in the list
of news sites. This reduced the size of the networks from over 80,000 nodes to 422 nodes
and 3113 edges (for January) and 417 nodes and 3086 edges (for December). Since we were
primarily concerned with cross-site browsing, we ignored intra-site links (which corresponds

to excluding self-loops from our graph representation). We also recorded the total amount
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of incoming traffic for each node that arrived either directly (e.g, via bookmark, clicked link
from email, etc.), or via some website not in our list of news sites.

Based on preliminary analysis of empirical data, we were able to show that network
position has an impact on how much traffic a website receives, and how often it is used as
a starting point for browsing. We found that, regardless of the website’s size (measured by
the traffic it receives in a month), the more central a node is, and the more it will be used
as an anchor node. A preliminary regression model on the data showed that highly central
nodes gain traffic over time, while less central, and more clustered nodes will lose traffic,
even when the original node size is controlled for.

Building upon these results we constructed a simulation that models the traffic across the
network. The training data (Ry.qi,) that we will be trying to match with our agent-based
model (described in section 7.3.2) consists of the quantity of traffic on each of the edges
during January, with the environment (FEj.q;,) consisting of the unweighted version of the
graph (which is a proxy for the hyperlink structure) and the probabilities of entering the
graph (from the outside world) at each node. Similarly, R and Ejs are composed of
the equivalent data for the month of December. Things move quickly in Internet time: the
December network and traffic is substantially different from in January, with only around
60% of traffic volume remaining on the same links. A visualization of the January graph is
shown in Figure 7.1, illustrating a dense cluster of sites in the center, with many peripheral

(mostly low-traffic) sites surrounding it.

7.3.2. Model Implementation

Using the NetLogo [Wilensky, 1999] multi-agent modeling language, we developed a simple

agent-based model of consumer browsing behavior, premised on the idea that a consumer’s
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Figure 7.1. Visualization of the directed link network for the January comScore
dataset. Node size/color both reflect the total number of observed incoming
and outgoing hyperlinks for each website.

decision of which link to click on may be approximated as a function of the structure of
the observable inter-site hyperlink network. That is, given an unweighted directed network,
which merely shows the possible links to other news websites, an agent may choose among

the link options based on network-theoretic properties of the candidate destination nodes.
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Of course, it is ludicrous to imagine that consumers actually compute network measures
for each candidate website, when they are considering whether to follow a link to site A
or site B. Rather, these measures should be taken to characterize (or be correlated with)
unobserved properties of the site - e.g., a site with a high betweenness centrality is one that
serves a connecting role to the news website world, whereas one with a high number of out-
links to other sites is likely to be more of a news aggregator, and one with a high in-degree or
PageRank might be interpreted as being a producer. We also acknowledge that this model
ignores one of the most obvious factors that people (consciously) use when consuming web-
based news stories — namely, the title and/or content of the news article the link is pointing
to, i.e., the implied quality of the content. However, a key purpose of building this model
was to find how much leverage we can get out of the network structure, in terms of predicting
consumer traffic, while ignoring the content.

To explore this hypothesis, agents are given a ranking function, f(V), which is param-
eterized by weighting coefficients corresponding to the relative importance of a variety of
structural node-level network statistics. This ranking function takes a candidate node N as
input, and produces a real-valued score representing the appeal of moving to that node. The
ranking function is a linear combination of weighting coefficients corresponding to each of

the following properties:

e randomness - random value injecting noise into the ranking, allowing agents to choose

links stochastically.

in-degree - # of incoming links to this node

out-degree - # of outgoing links from this node

e in-component - # of nodes that can reach this node

out-component - # of nodes reachable from this node
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e pagerank - PageRank score (with a = 0.85) [Langville & Meyer, 2005]

e hits-hubs - HITS hub score for this node [Langville & Meyer, 2005]

e hits-authorities - HITS authority score for this node [Langville & Meyer, 2005]

e clustering - clustering coefficient for this node (calculated on the undirected version
of the graph)

e betweenness - betweenness centrality of the given node

e eigen - eigenvector centrality of the given node

Each of the weighting coefficients is a model parameter which can vary between —1.0
(biased against) and 1.0 (biased for), except for the special randomness weight, which varies
between 0.0 and 2.0. For example, assuming all other weights were 0, an in-degree weight of
0.8 and a clustering weight of —0.4 would correspond to a movement rule that prefers following
links to nodes that have a large number of in-bound links and a low clustering coefficient.
Since the randomness weight is 0, this movement rule would deterministically choose the
same path through the network, given the same starting point. As a second example, if the
betweenness weight were 0.5 and the randomness weight were 0.5, the movement strategy
would prefer moving to nodes that have high betweenness centrality, but would also give
equal weight to randomness in its decisions.

Besides the ranking function described above, we include two additional parameters to
control the behavior of the agent: no-backtrack, which prevents an agent from going back to
a node they just visited, and random-restart, which controls how often the agent starts a new
browsing session. Given the ranking function and these parameters, the web surfing agent’s

behavior is as follows.
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(1) The agent starts at a random node, chosen with probability proportional to the
empirically observed likelihood of someone arriving at that node (either from a
non-news website, a bookmark, etc).

(2) The agent forms a set of candidates from all of the nodes that are reachable by
outgoing links from its current location. If no-backtrack is set to TRUE, then the
node that the agent just traveled from (if any) is excluded from the set.

(3) If the candidate set is empty, or if a random variable is less than random-restart, the
agent restarts at a new location, i.e., go to step 1.

(4) Otherwise, the agent computes the appeal of following each link by computing the
ranking function across the candidate nodes. To guarantee that the network char-
acteristics are each being given equal weight, the node-level characteristics of each
of the candidate nodes are normalized by dividing by the sum of that characteristic
across all candidate nodes.

(5) The agent then chooses the candidate with the highest ranking function score. The
agent follows the link to that node, and we record a “click” on the link.

(6) Until some specified number of clicks have occurred, go to step 2 and repeat.

The output of the model (M) is the simulated traffic distribution (how many times
each link was followed). When the model is run on an empirical network, this output
can then be compared with real world traffic data, and we can attempt to calibrate the
13 model parameters to improve the match (as described in Section 7.4). In terms of the
QBME framework introduced in Chapter 3, unlike in the Artificial Anasazi model, we are
not condensing information across time - instead, we are only using the final slice of data
in the temporal dimension, and discarding all history about how it reached that state.

Furthermore, there are three types of agents in this model (websites, hyperlinks, and web
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Figure 7.2. The directed network for the toy problem.

surfers), and we are only extracting information from the hyperlinks to compare it with
a reference pattern. Because this basic version of the model does not include interaction
between agents and because an agent restarting is equivalent to a new agent entering the
system, we ran the simulation with just a single agent. In its current form, the surfing agents
are also memoryless (or a one-step memory, if no-backtrack = true), making the simulation
interpretable as approximating the steady-state distribution of a stochastic Markov process
on the hyperlink graph structure.

Since the actual network is very complex and since we do not actually know the underlying
rules that consumers use when moving between nodes in a network, we also created a “toy”
network and dataset so that we can explore the effect of calibration measures in a world
where the ground truth is actually known. We generated a small random graph of 10 nodes

and 23 links (see Figure 7.2). We then initiated the model using a set of parameters that
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were similar to parameters discovered in the real world dataset based on early runs of the
GA: random-restart = 0.15, randomness = 0.40, out-degree = —0.1, in-component = 0.2, out-
component = 0.2, eigen = 0.1, no-trackback = false, and all other parameters set to 0.0. We
also assumed that the likelihood of starting at any of the nodes was equal. We then ran this
model once to generate a ground truth data set similar to the real world news consumption

data set.

7.4. Calibration

Regardless of whether we are examining the toy problem or the real world problem,
in order to match the model data, M, against real world data, R, we must first divide
R into Rypqin and Ryes, with corresponding environmental variables .., and Ej.q. Cal-
ibration is then accomplished by identifying the set of parameters P* such that an error
measure €( Ry qin, M (P*, Etrain)) is minimized, and the model can be validated by examining
€(Riest, M(P*, Epest)). In our case we use a GA with the error function, €, as the fitness
function, and each individual being a potential parameter set, P. In this next section we

define five different error functions, and the specific calibration that we carried out.

7.4.1. Calibration measures

For this work, we assume that the real world data R and the model’s output M can both be
represented using fixed-length vectors of numeric values (Vg and Vj, respectively). Since it
is impossible to make a comprehensive list and test all possible error measures, we chose to
investigate a set of five specific error measures for model calibration: correlation, and four

different measures of the L” norms. These five commonly-used measures span a range of
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what they emphasize, but they all capture some notion of distance between empirical and

model data.

(1) corr - Pearson’s product-moment correlation coefficient®. Since correlation values
range between —1 (perfectly anti-correlated) through 0 (uncorrelated) to 1 (per-
fectly correlated), the “error function” we are technically minimizing here is the
negative of the correlation. However, for simplicity of interpretation, we will report
all calibration values as the correlation (Pearson’s r). As a result, for this measure
only, a higher value will indicate a closer match to the empirical data.

n—1

£ (Vir(i) = Var) (Vi) = Vi) -

(n —1 ) OV OVr

corr =

where oy,, oy, are the standard deviations of Vj; and Vg respectively.

(2) L° - This is an extension of the L? norms to the case where p = 0. L°(Vy, Vg) =
(the number of positions where the two vectors differ). Note that the magnitude by
which they differ does not matter.

(3) L' - The L' norm, commonly known as “Manhattan distance”, is computed by:

n—1
L' = V(i) = Va(i)| (7.2)

=0

(4) L? - The L? norm, commonly known as “Euclidean distance”, is computed by:

L? = ni Vi (i) — Va(i)|? (7.3)

2Stonedahl and Wilensky [2010b] also proposed using the correlation coefficient as a fitness function, though
not in the context of calibration, but rather for the converse task of sensitivity analysis and model testing.



229

(5) L% - The L™ norm, also known as “Chebyshev distance” or “maximum metric”, is
computed by:

1 = max[Vag (i) — Va(i) (74)

The four LP norms comprise a spectrum of calibration choices: L° ignores magnitude
and cares only about the quantity of errors, while L> ignores quantity and cares only about
the magnitude of the largest error. The L' and L? measures fall in between. Also, note
that minimizing the L! norm is the same as minimizing mean absolute error, and the L?
norm is equivalent to minimizing either mean square error (MSE) or root mean square error
(RMSE).

The corr correlation function belongs to a different family of error measures. However,
the corr function has several interesting properties, including that it is invariant to both
location and scale. That is, perfect correlation can be achieved when Vg = oV, + 3 where
a and [ are scalar constants. Whether this is desirable depends on your situation and
calibration goals. In our case of attempting to match hyperlink traffic between news sites,
if our model can produce numbers that are correctly correlated with the traffic on each
link, then we would consider that a successful calibration. Scale invariance has the benefit of
needing shorter simulations using fewer agents to compare to real data using large numbers of
people over long time periods. However, in the current work, in order to successfully examine
all of the proposed error messages, we run our simulation until it has created exactly the
same amount of hyperlink traffic as the real-world dataset, so it is theoretically possible for

all calibration measures to attain a perfect match.
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7.4.2. Calibration method

To perform the actual calibration, we used BehaviorSearch[Stonedahl & Wilensky, 2010a]
(see also Chapter 10), which provides facilities for exploring the parameter space of agent-
based simulations using GAs. Specifically, within BehaviorSearch we used a steady-state GA
with population 50, tournament selection (tournament size 3), and replacement strategy of
replacing a random individual in the population. We used a crossover rate of 70%, with a
mutation-chance of 5% per locus, and one-point crossover.

The only complicated part of the GA setup was the genotype encoding, which used a
hybrid real-valued and boolean chromosomal representation, and included some engineered
epistatic interactions between genes. The random-restart parameter was real-coded, and
the no-backtrack parameter was boolean. The 11 ranking coefficients were real-coded, but
after each coefficient gene we inserted a boolean gene that controlled whether the previous
coefficient was expressed. The intuition behind this arrangement was that we had given
the model a fairly large number of potential network-statistics to include in the ranking
function, and it was unknown which would be useful. Providing epistatic switches that
could quickly turn some of these characteristics on or off might allow the GA to construct
simpler strategies to build on. Experimentation supported our intuition in this case (see
Section 7.6.1 for discussion and supporting evidence for this side-point).

For the real-valued genes, we used Gaussian mutation, with a standard deviation of 10%
of the parameter’s allowed range, and for the boolean genes, we used simple bit-flip mutation.
Crossover was performed only at the per-gene level — for simplicity, we treated the binary
genes and real genes the same during crossover, and we did not employ more sophisticated

real-valued crossover mechanisms (such as those proposed by [Ballester & Carter, 2004b]).
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’ Settings H corr ‘ L ‘ LT ‘ L? ‘ L™ ‘
original 0.993 (0.0012) | 22.8 (0.4) | 1392.2 (123.8) 527.5 (47.6) 345.1 (35.0)
GA-corr || 0.999 (0.0002) | 22.5 (0.6) 409.4 (74.8) 113.8 (24.7) 61.9 (18.4)
GA-L? 0.619 (0.0021) | 23.0 (0.0) 7370.9 (56.9) | 3074.5 (13.7) | 2579.5 (15.4)
GA-L! 0.996 (0.0011) | 22.9 (0.3) 991.7 (158.0) 282.9 (37.7) 180.8 (19.2)
GA-L? 0.995 (0.0007) | 22.6 (0.5) 1150.5 (87.8) 323.6 (21.9) 156.8 (13.0)
GA-L*® 0.991 (0.0010) | 23.0 (0.0) 1694.7 (89.8) 436.9 (22.4) 172.2 (12.5)

Each cell gives the mean (and stdev) from 30 replicate simulations.

Table 7.1. Calibration measure cross-comparison for the toy problem. The best
GA-found parameter settings when optimizing using each calibration measure
were evaluated against the target data using all five calibration measures.
GA solutions were also compared to the original settings that were used to
generate the target data. The best calibration values for each column are
shown in bold (correlation is maximized, whereas the LP error measures are
minimized). (There was no clear best L° measure.)

For the fitness function, we used one of the calibration measures listed above in section 7.4.1,
comparing simulated results from our ABM against the empirical traffic distributions for the
same network.

In general, we ran 30 repeated searches using the GA for each calibration function and
for each dataset (the toy problem and real world problem) . We ran the search for 200K
fitness evaluations (model simulations) for the toy scenario, and 100K fitness evaluations
for the comScore January dataset (the much larger dataset and longer simulation run-time
necessitated running shorter searches). After the evolution finished, we chose the best search
result from each of the 30. This gave us 5 parameter sets, P, for each problem; one for each

€ITOor measure.
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Figure 7.3. Parameter settings for the best individuals from the best GA-
searches for each of the five calibration measures, for the toy problem.

7.5. Results and Discussion

7.5.1. Toy problem

232

The best results for the toy problem are given in Table 7.1, and the parameter settings that

achieved those results are shown in Figure 7.3.
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Finding 1: We were surprised to discover that the GA was able to find parameter
settings that matched the target data better than the original parameter settings that were
used to artificially generate the target traffic data. For instance, the average correlation
measure from 30 runs with the best settings found in the GA-corr searches was slightly
better than the correlation when the model was run 30 times with the original settings.
Similarly, better L', L?, and L™ error measures were achievable with the GA’s settings than
with the original settings. How is this even possible? The finding relies on the fact that the
model is stochastic - different random choices by the surfer agent result in some variation in
traffic distributions among the links. If the surfer agent was allowed to run for an infinite
number of steps, the traffic distribution would converge to a steady state. However, after
10,000 link-follows, results can still vary, meaning that when running the model with the
original settings, and trying to match the data generated from one specific run, you do not
automatically get a perfect matching.

Finding 2: The L° error measure performed very poorly (mean L° error of 23). In
fact, L error measurements are out of a maximum of 23, which corresponds to failing to
perfectly match the traffic of any of the 23 links in the graph, and regardless of the error
measure this value always neared 23. Even when the GA was searching for the best L°
error-value, the parameter settings it found failed to match the data on any link on any of
the 30 runs. On the other hand, some of the best calibrated parameters using other methods
(e.g., GA-corr) managed to match exact traffic values occasionally. The poor performance
on the GA-L? search can be attributed to its providing an insufficient search gradient, as
well as the objective being very hard to achieve (as evidenced by the generally poor L values

obtained by all searches). Compared to the other L measures, optimizing the L° measure
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is in some sense closer to a needle-in-a-haystack function and it should probably be avoided
in GA-based calibration for this reason.

Finding 3: In this experiment, the GA-corr search proved to be the clear winner.
As shown in Figure 7.3, the GA-corr parameter settings were similar, but not identical
to the original (TRUE) settings that generated the toy dataset traffic distribution. Quite
surprisingly, searching for good correlation yielded parameter settings that also provided
lower L', L? and L* error measures than the parameters discovered when attempting to
optimize for those quantities directly. In other words, the correlation calibration measure
served as the most effective fitness function for this problem, regardless of which calibration
measure you were most interested in. Thus, the GA-corr parameter settings Pareto dominate
the other parameter settings — that is, these parameter settings are as good or better than the
parameter settings found using other fitness functions, on every calibration measures. This
suggests that the correlation fitness function somehow smooths out the fitness landscape and
more directly leads the population towards a more fruitful area of the search space than the
LP-based error measures do. In any case, this result was quite surprising to us, since we
expected that GA-searches for a specific calibration measure (with the exception of the L°
measure, which we anticipated might fail) would excel in optimizing its own value (though
possibly at the expense of other calibration measures). This would be an extremely important
and useful discovery if the superiority of correlation-based calibration were generally true;
however, this is not always the case (as will be demonstrated by the experiments in the

following section).
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7.5.2. Real World Problem

7.5.2.1. Training set. We now turn our attention to the problem of matching empirical
web traffic on our substantially larger dataset, where it is unknown how good of a calibration
we can expect. The results from both the training and test set error measure comparisons
are presented in Table 7.2, and the values of the best parameters found in each search are
given in Figure 7.4.

Finding 1: Unlike in the toy problem, the G A is able to make some progress optimizing
the LY calibration measure, as evidenced by it finding parameters yielding lower mean L°
than the searches optimizing correlation or the other L” norms. This makes some sense,
because whereas the toy problem only had 23 links that could either match or not match,
the comScore-January network had 3113 links, allowing the L°-based fitness function a little
more possibility to provide a search gradient. However, an L° measure of 2811 means that the
simulated traffic did not match exactly on 2811 links, out of the 3113 links in the network.
In other words, even in the best case, the GA was only able to find settings that could
match about 10% of the network’s links on average, while leaving 90% mismatched. This
underscores the fact that requiring perfect matching of historical data is a harsh criteria for
calibration, at least in our given scenario. In some cases, perfect matching of real-world data
may be feasible, but even in such cases, we predict that calibrating using either correlation or
an LP norm where p > 0 will provide more information to the GA and permit more efficient
search.

Finding 2: Unlike the toy problem where all the model results, regardless of the error
measure, match well with the data using the correlation measure, in the real world dataset

those parameter settings which were specified using one of the other error measures do not
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generate model results which match well using the correlation measure. There are in fact
statistically significant different results on all of the measures, but nowhere is this difference
more striking than the correlation measure. The model data generated using the correlation
error measure, correlated twice as well with the data as any other model data set that was
generated. In the case of L?, in particular, the data was almost uncorrelated with the real
world data, indicating that a random result would have done almost as well as the results
generated by the L? measure. This seems to indicate that correlation is definitely capturing
a very different element of the matching problem than any of the other measures.

Finding 3: Unlike the toy problem where correlation was Pareto dominant, in the real
world problem no error measures dominated all other error measures (though L? dominated
L'). Given that there is no pure dominant measure, researchers must be careful as to which
measure to choose when calibrating their models. This is especially true given that Figure
7.4 shows that the actual parameter settings discovered by the various measures were not too
different, and yet those different settings had a large impact on the error measure scores. As
we discussed in Section 7.4 these different measures all take into account different choices,
researchers should use L° if they are interested in the quantity of errors, and L* if they
are interested in magnitude of the largest error, but clearly there is no measure that will
subsume all the others. Moreover, researchers should be aware of these measures and what
effect each one has on the calibration effort when adjudicating the results. For instance, a
paper which focuses primarily on L could very well be covering up that though the largest
error was small, every single matching element was incorrect, and vice versa for L°.
7.5.2.2. Testing set. Finally, we take the parameter settings, P*, calibrated on the Jan-
uary data, Ry, and examine the results of the error measures on a dataset collected 11

months later in December, R;.. using the same set of five error measures.
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Finding 1: As before, the L° measures are generally poor, indicating an inability to
calibrate well with the data using the criterion that the simulated traffic value must match
the empirical value exactly. This again begs the question of whether this measure is too
difficult for complex problems. In fact there may by necessity be a trade-off where any
model that is able to fit this measure well, will also not be very generalizable. The best
model for this measure may very well be a model which does nothing but specify the exact
values of all of the links, which is a model that could not be applied to any other network
or dataset.

Finding 2: The L? results are not substantially worse on the December data than they
are on the January data. For instance, for the L! measure the error only goes up by 10%,
though the increase in error appears to go up as you move toward L°°, which indicates that
the model is matching the same quantity of data points, but the magnitude of the worst
difference is growing. Given the fact that the model was trained on a different dataset
(some empirical results indicate that these two datasets have very different traffic patterns),
this indicates that the parameter settings that the GA discovered using the various error
measures on the January dataset are somewhat generalizable.

Finding 3: The relationship between the results within the correlation measure has
changed. Though L', L?, and L™ all do worse with regards to the correlation measure than
they do on the January dataset, L° actually does better in terms of matching correlation
values than it does on January dataset and approaches the correlation value achieved when
the fitness function is in fact the correlation measure. This seems to indicate that though
the L° measure is a difficult error measure to use as calibration the parameter settings that

it generates may be useful with regards to other error measures.
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’ Settings H corr ‘ L ‘ LT ‘ L? ‘ L ‘
GA-corr 0.72 (0.0002) 2912 (15) 44364 (73) 7246 (49) 6190 (45)
GA-I” 0.33 (0.0068) 2811 (17) 42364 (135) 4198 (40) 2906 (49)
GA-L! 0.30 (0.0048) 2836 (13) 42744 (67) 5977 (39) 3406 (51)
GA-L? 0.02 (0.0039) 2883 (12) | 40499 (104) 3197 (4) 2211 (2)
GA-L*>® 0.20 (0.0056) 2959 (10) 47293 (84) 3527 (17) 1743 (23)

Calibration results on the comScore December testing data.

] Settings H corr \ L \ LT \ IL? \ L*> ‘
GA-corr 0.41 (0.0014) 2843 (14) 48843 (64) 9515 (46) 5260 (48)
GA-I° 0.37 (0.0024) 2799 (15) 45482 (114) 6792 (48) 4584 (67)
GA-L! 0.24 (0.0031) 2806 (13) 46145 (93) 7513 (40) 3915 (52)
GA-L2 0.03 (0.0058) 2860 (14) 44480 (109) 4774 (5) 3324 (5)
GA-L*>® 0.08 (0.0029) 2923 (12) 50911 (75) 5238 (17) 3343 (0)

Calibration results on the comScore December testing data.

Table 7.2. Calibration measure comparison on comScore training and testing
datasets. Each cell gives the mean (and stdev) from 30 replicate simulations.
The best GA-found parameter settings when optimizing using each calibration
measure on the January training data were evaluated against the January data
(top) and the December data (bottom) using all five calibration measures.
The best calibration value for each column is shown in bold (correlation is
maximized, whereas the LP error measures are minimized). (For December,
there was no clear best L° measure.)

7.6. Genetic Algorithm Search Dynamics

7.6.1. Impact of epistatic chromosomal interactions

As mentioned in Section 7.4.2 above, we purposefully introduced epistatic interactions into
the GA’s genotype with the goal of improving performance when searching through the
high dimensional parameter space. This also had the effect of causing the GA to more
frequently sample simpler ranking strategies, which is beneficial from the perspective of
Occam’s razor. We placed each boolean switch gene adjacent to the gene for the coefficient
that it epistatically controlled in order to promote linkage and make it more likely that the

switch and its coefficient would be inherited together during crossover.
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Figure 7.4. Parameter settings for the best individuals from the best GA-
searches for each of the five calibration measures for the January dataset.

When working with genetic algorithms, one quickly learns not to trust one’s intuitions;
the road to search performance purgatory is paved with seemingly good intuitions. So despite
the arguments made above, it was not clear that the engineered epistatic interactions would

be beneficial. In fact, one could make a counter argument that they might be harmful
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because the addition of the switches increased the size of the genome, and thus the size of
the search space, which could plausibly contribute to worse performance.

To empirically settle the matter, we performed 30 genetic algorithm searches both with
and without these epistatic switches, for the L', L? L>, and corr calibration measures,
and recorded the average search performance in each case. In no case was the performance
significantly better without the epistatic switches, and in several cases the switches resulted
in a large and significant improvement, as shown in Figure 7.5. These results confirmed that
the addition of boolean switches for epistatic interactions in the genotype can significantly
increase the GA’s performance. It could be that for this problem better solutions tend to
involve fewer ranking coefficients, and thus the introduction of the switches biased the search
toward more fruitful areas. Alternatively, the ability of the GA to manipulate the complexity
of the problem on the fly (by turning switches on or off) may have contributed to the GA’s
success. In either case, this relatively simple addition to the genotype to promote epistatic
interactions had a noticeable performance benefit, and it may provide a generally useful

technique for similar ABM exploration situations.

7.6.2. Deception in real-world fitness functions

Significant research in genetic algorithms has focused on the characterization of those types
of problems that are difficult for genetic algorithm (or other metaheuristic search techniques,
like hill climbers) to solve. In particular, this led to the notion of “deceptive fitness functions”
[D. Goldberg, 1987; Whitley, 1991; Horn & Goldberg, 1994], which are (broadly speaking)
fitness landscapes that have local optima with large basins of attraction that tend to lead
the search process away from superior global optima. While there has been some criticism

of specific formulations of deception and its analysis with relation to genetic algorithms
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Figure 7.5. For several of the calibration measures (such as the L' and L*
searches shown here), the GA search performance was significantly improved
by the use of epistatic switches controlling whether certain model parameters
were allowed to vary or not.

performance [Grefenstette, 1992a; Forrest & Mitchell, 1993], it remains an important concept
in the study of metaheuristic search and optimization. Most studies of deception have focused
on artificially constructed functions (e.g., N-bit traps, ), and there have been informal claims
that deception might be irrelevant to real-world problems [Jones & Forrest, 1995]. Thus, it
seemed noteworthy when we discovered evidence that was highly suggestive of a deceptive
fitness function, when performing a follow-up experiment.

Specifically, we ran additional genetic algorithm searches directly on the testing dataset

(December comScore) to determine the best calibration that was achievable on that dataset.
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In general, these experiments confirmed that there was better calibration possible than had
been achieved using the training set calibrated parameters. This was an expected result,
and not particularly interesting. However, in the process of examining those results, we
noticed an interesting pattern among the best solutions found when calibrating for correla-
tion on this December dataset. As shown in Figure 7.6, the results generally fell into two
clusters: those that achieved decent correlation (around 0.7) and those that achieved better
correlation (around 0.8). Furthermore, these clusters in fitness value also corresponded to
clusters within the parameter space. Several parameters varied between the clusters, but an
easily distinguishable feature was that the better fitness cluster had no-backtrack = FALSE,
whereas the worse fitness cluster had no-backtrack = TRUE. In essence, these groupings
represent qualitatively different parameter settings, not merely quantitative variation around
similar parameter settings. The other interesting facet was that the vast majority of searches
ended at the inferior parameter settings. This shows that the representation of the search
space and fitness function tend to lead the genetic algorithm to a suboptimal solution (per-
haps because fitness improvement is easier early on in the search process when no-backtrack
=TRUE).

These results indicate that for this specific problem, we are dealing with at least a mildly
deceptive fitness function. For that matter, if a fitness function were strongly deceptive
enough, we might never even realize it, if the genetic algorithm never found the true optima,
and was always led to the suboptimal solution. This is a fundamental issue, and there is
no guaranteed way to avoid it. Various approaches have been suggested to help genetic
algorithms cope with deceptive problems (e.g., messy GAs [D. Goldberg, Korb, Deb, et al.,
1989]), and often changes in chromosomal representation for the genetic algorithm can suffi-

ciently rearrange the fitness landscape to decrease deception. Moreover, while it is desirable
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Figure 7.6. Distribution of fitnesses of the best parameter settings found when
searching directly for best correlation with the December comScore dataset.
Most of the 30 searches ended up at a suboptimal fitness peak, but a few were
able to find a better solution (that included enabling backtracking for the web
surfer agents). This strongly suggests that maximizing the correlation fitness
function was a “deceptive” problem, in that local optima with large basins of
attraction tend to lead the search process away from superior global optima.

to find the global optimum in a search space, there are many cases of ABM exploration where
finding very good optima is sufficient to the task, regardless of whether they represent the
absolute best parameter settings or not. In any case, it was interesting to witness evidence of
a deceptive fitness function “in the wild” — that is, in the context of this real-world problem
of model calibration, rather than in an artificially constructed functions where it is typically

discussed.
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7.7. Conclusion and Recommendations for Future Work

In this chapter, we explored the concepts of calibration and validation of an agent-based
model using a variety of error measures in the context of an evolutionary algorithm. We have
explored five different measures in the context of both a toy problem and a difficult real-world
problem. We have shown that there is not an easily defensible Pareto optimal error measure
that works in all cases, but we have illustrated what benefits and disadvantages each of
these measures could have on model calibration using an evolutionary algorithm. To further
explore trade-offs between different calibration measures, it might be useful to use multi-
objective optimization to search for multiple calibration measures simultaneously, and thus
reveal a Pareto front that will characterize trade-offs between different calibration measures
[Narzisi et al., 2006]. As a side point, the benefit derived from expanding the genotype search
space using epistatic boolean interactions also deserves further investigation. While genetic
algorithms offer a promising technique for calibrating ABM parameters, one must give careful
consideration to the choice of calibration measure. Different calibration measures provide
varying levels of efficiency as fitness functions for performing this calibration, and can lead
to varying results. Thus model analysts would be wise to try several different calibration

measures when attempting to calibrate a model.
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CHAPTER 8

Fitness Caching in Noisy/Stochastic Environments

“It’s a good thing to have all the props pulled out from under us
occasionally. It gives us some sense of what is rock under our
feet, and what is sand.”

— MADELEINE ’ENGLE

“Nothing is built on stone; all is built on sand, but we must build
as if the sand were stone.”

— JORGE LuIs BORGES

Uncertainty is endemic to the human condition, as well as to the analysis of agent-based
computer simulations. Consider the Wolf Sheep Predation model [Wilensky, 1997¢] discussed
in Chapter 3. Using the exact same parameter settings, one could run the model one million
times, and every single time the wolf species could go extinct before 1000 model ticks have
passed. Even so, we cannot be absolutely certain that on the next run the wolf species won’t
thrive indefinitely. This would be a very unlikely outcome — but we cannot be positive that
it would not occur. This is the substrate on which we must build our model analysis —
constructed on the “sands” of confidence and likelihoods, but never proved with the stable
“rock” of certainty. Through effort and examination, uncertainty can be reduced, but it
cannot be eliminated, and thus it must be faced and lived with. Likewise, intelligent search
processes (such as genetic algorithms) must confront this uncertainty when they are applied

to ABM exploration and analysis tasks. There are methods of dealing with uncertainty that
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are more effective than others, and it is desirable to both understand and quantify how
uncertainty impacts our attempts at model exploration and analysis. This is the subject of
this chapter.

However, rather than focusing specifically on the domain of agent-based modeling, the
work presented here is sufficiently general to apply to any situation where fitness evaluations
are noisy but the uncertainty can be reduced by additional sampling. Compared to prior
chapters, this chapter will place a stronger emphasis on a mathematical /analytic treatment
of the problem, from first principles, although it will be accompanied by empirical results on
traditional test-bed fitness functions. In order to make the analysis tractable, we will focus
primarily on the impact of noise on the simpler random-mutation hill-climbing (RMHC)
algorithm (which is similar to a 1 4+ 1 evolutionary strategy), rather than facing the full
complexity of the genetic algorithm. However, disregarding the crossover operator (which
dynamically deforms the fitness landscape according to the genetic makeup of the current
population), the GA’s mutation operator navigates the same fitness landscape as the RMHC
(and thus the GA resembles a parallel population-based hill-climber with dynamic realloca-
tion of hill climbing resources). In short, although the GA is a more sophisticated search
algorithm, theoretical analysis of the fitness landscapes for RMHC provides a reasonable
first-order approximation for analyzing GA performance with the same fitness functions.
More pragmatically, first-principles theoretical analysis of GA’s performance has (thus far)
proven infeasible without making significant simplifying assumptions.

Here is the central dilemma: given a noisy metric on an arbitrary agent-based model,
how many times should one run the model in order to reduce the noise such that an adaptive
search process (such as a genetic algorithm) can make positive progress through the space

and arrive at good solutions? Without fitness caching, it may be possible to run only a
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single replicate (thus getting a very noisy signal), but give the genetic algorithm a large
population, so that even though many individual fitness comparison may be wrong, on
average, the genetic algorithm may still make progress. Another way of considering this, is
that an individual with poor fitness may last a while in the population by getting lucky with
the noisy fitness evaluation, but over time it will probably be weeded out. However, when
using fitness caching, the same point will never be evaluated again in future generations,
since the cached value will then be used instead. With caching, rather than taking noisy
measurements each time from the true fitness landscape, the situation is equivalent to having
a frozen (incorrect) landscape, due to displacement of each point by noise. In this case, the
choice of sampling replications is even more crucial, since it will determine not just how
long it might take to reach an optimal value, but whether it is possible to reach it (and
recognize it) at all. One extreme approach would be to run numerous replicates of the model
and reduce noise to a very low level. However, this is wasteful, since evolutionary search
does not require perfect values to operate efficiently. This chapter formally investigates this
trade-off in an attempt to develop heuristics for quantifying search degradation due to noise,
and help predict an appropriate level of sampling.

For many large-scale combinatorial search/optimization problems, meta-heuristic algo-
rithms face noisy objective functions, coupled with computationally expensive evaluation
times. In this chapter, we consider the interaction between the technique of “fitness caching”
and the straightforward noise reduction approach of “fitness averaging” by repeated sam-
pling. While both of these techniques are being used in practice, the interaction between
them has not been previously investigated, and it is important to applications such as ABM
exploration (among others). Fitness caching changes how noise affects a fitness landscapes,

as noisy values become frozen in the cache. Assuming the use of fitness caching, we seek
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to develop heuristic methods for predicting the optimal number of sampling replications for
fitness averaging. We derive two analytic measures for quantifying the effects of noise on
a cached fitness landscape (probabilities of creating “false switches” and “false optima”).
We empirically confirm that these measures correlate well with observed probabilities on a
set of four well-known test-bed functions (sphere, Rosenbrock, Rastrigin, Schwefel). We also
present results from a preliminary experimental study on these landscapes, investigating four
possible heuristic approaches for predicting the optimal sampling, using a random-mutation

hill-climber with fitness caching.

8.1. Motivation

There are a number of problem features that universally pose challenges for all meta-
heuristic search/optimization processes: predominant among these are noise/uncertainty,
and the slowness of fitness evaluation (i.e., the time necessary to evaluate the objective func-
tion for any point in the search space). The presence of noise in a fitness function impedes
making accurate comparisons between candidate solutions, or knowing how close the search
process is to reaching a certain performance objective. In many cases, it is possible to use
an average of many independent fitness function evaluations in order to reduce the noise.
The length of time required for a single fitness evaluation can be significant, as it expands
the length of the search by a direct multiplicative factor, and limits the number of evalua-
tions possible for the search. Sometimes it is possible to use a less accurate surrogate fitness
function, which can be evaluated more quickly, but at the cost of additional noise in the
fitness estimates (for a survey of fitness approximation, refer to [Jin, 2005]). In general, it is
impossible to eliminate both of these problem features, although there are many problems

where trade-offs can be made between the two.
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When fitness evaluation is particularly computationally expensive (e.g., in large complex
simulations), it is sometimes attractive to cache fitness values for re-use, to save the cost
of re-evaluating them again later. At least in some non-noisy optimization problems, this
has been shown to be an effective approach for reducing total computational cost [Kratica,
1999; Kratica et al., 2001], and we believe there is potential for applying it to noisy search
spaces as well. In this work, we apply a combination of formal and empirical methods to
try to investigate the relationship between fitness caching and the noise reduction technique
fitness averaging by repeated sampling. In noisy environments, too little sampling can make
the search untenable, whereas too much sampling can be unacceptably slow. Somewhere in
between, there exists an ideal number of sampling repetitions, or “sweet spot”, where the
search most efficiently reaches a desired fitness level. Assuming the use of fitness caching,
and using only information that can be extracted from the fitness landscape with reasonable
efficiency, we would like to be able to predict where this “sweet spot” will fall.

The basic intuition motivating this research is that some landscapes are much more sen-
sitive to the effects of noise than others, with regard to movement through these landscapes.
For instance, a landscape that contains large steep mountains may be easily traversed to
values of high fitness, despite the presence of significant noise, whereas even a small amount
of noise may cause a landscape comprised of gentle slopes to become unnavigable. It would
be very useful to have an efficient method of assessing the robustness of a landscape with
respect to noise, in order to choose an appropriate sampling rate when applying a meta-
heuristic search technique to the problem. The current study investigates the correlation
between the distribution of fitness gradients throughout the landscape and the deleterious

effects of varying levels of noise on landscape traversal.
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This chapter begins by situating the present work in the context of related research
in the field. We then propose two measures to quantify the impact of noise on search
processes within fitness landscapes: the probability that noise generates false local optima
in the landscape, and the probability that noise will result in an incorrect choice when
comparing two neighboring locations in the space. We offer mathematical expressions for
these two measures, which are numerically confirmed by Monte Carlo simulations of the two
respective probabilities, on a set of four well-known test-bed functions (sphere, Rosenbrock,
Rastrigin, Schwefel). Next, we discuss how these measures could be used in heuristics for
choosing an optimal sampling number for noise reduction. We then present the results of an
experimental study where we empirically determine optimal sampling rates on the four test
landscapes, given a straightforward local search technique (stochastic hill climber) that uses
fitness caching, and compare the potential of four heuristic approaches to predict the “sweet
spot” for noise reduction. The chapter concludes by presenting several avenues for possible

future work in this vein.

8.2. Related Work

The beneficial effects of fitness caching (specifically for genetic algorithms) have been
discussed by Kratica [Kratica, 1999], and also applied to a practical problem (plant loca-
tion) in [Kratica et al., 2001]. In [Kratica et al., 2001], the authors note that one of the
conditions for successfully applying fitness caching is a large evaluation time for the fitness
function. One real-world example where fitness caching may be beneficial is the the op-
timization of simulation parameters, since complex simulations may require long running

times. However, another aspect of many real-world optimization problems is the presence of



251

noise or uncertainty. For example, a recent instance of fitness caching [Stonedahl & Wilen-
sky, 2011] (see also Chapter 4) used two meta-heuristic search algorithms (hill-climbing and
genetic algorithms) to explore the parameter-space of several agent-based simulations of
biologically-inspired flock formation. In this case, the multi-agent simulations were stochas-
tic, resulting in noisy fitness evaluation; however, the interaction of fitness caching with the
noise was not explored. The situation is similar for many related problems involving the
exploration of multi-agent based simulation, including parameter optimization [Stonedahl et
al., 2010] and calibration and sensitivity analysis [Stonedahl & Wilensky, 2010b] (see also
Chapters 5 and 6). Moreover, while there is a potential benefit for fitness caching, even in
noisy environments, we are unaware of prior work discussing the use of fitness caching in
noisy /uncertain optimization problems, or examining the potential repercussions for search
performance in detail.

Considerable research has been done in the general area of meta-heuristic search and
optimization in noisy fitness landscapes, and it remains a topic of considerable interest. For
example, recent work spans from developing efficient techniques of determining the best
individual from a noisy population [Jaskowski & Kotlowski, 2008], to defining standard sets
of noisy functions for benchmarking different optimization techniques [Hansen, Finck, Ros,
& Auger, 2009b]. The volume and breadth of work in this area is beyond the scope of this
thesis; for a comprehensive survey of noise/uncertainty in evolutionary algorithms, see [Jin
& Branke, 2005].

It is worth highlighting some of the more closely-related research. One strand of research
concerns the analysis of search spaces or fitness landscapes, such as the study of Kauffman’s
NK-landscapes [Kauffman, 1993; Kauffman & Levin, 1987], similarly inspired tunable land-

scapes [R. Smith & Smith, 2001], as well as search performance on such landscapes (e.g.,



252

[Merz & Freisleben, 1998]). Also particularly relevant is the work on adaptive walks through
noisy fitness landscapes [Levitan & Kauffman, 1995]. Our work also pertains to adaptive
walks (or local neighborhood-based search algorithms in general) in noisy landscapes, but
with fitness caching the noise becomes frozen, as we will discuss later. Also, because our
application interests are focused more on simulation parameter search rather than under-
standing of biological evolutionary processes, we chose to investigate landscapes based on
real-valued optimization benchmarks (see Section 8.2 below). So-called “fitness evolvability
portraits” [T. Smith, Husbands, Layzell, & O’Shea, 2002] appear to be another promising
direction for fitness landscape analysis. While Smith et al. [2002] did not address issues of
noise, in the future several of the ideas about characterizing the landscape at different fitness
levels might be productively incorporated on the sampling with fitness caching problem we
are addressing here.

Several prior works ([Fitzpatrick & Grefenstette, 1988], and more recently [Balaji, Srini-
vasan, & Tham, 2007]) have discussed/debated the relative merits of repeated sampling
for noise reduction versus alternative methods, such as increasing population size. How-
ever, when fitness caching is used, separate individuals in a population-based search do not
contribute independent fitness trials, so increasing the population offers no advantages in
reducing the impact of noise. Rana et al. [1996] examine the effects of noise on search
landscapes, in particular discussing the creation of false local optima and the soft annealing
of peaks (or “melting” effect, as referred to by Levitan and Kauffman [1995]). Our current
work is also interested in the creation of false local optima by noise, but the use of fitness
caching changes both the character and consequences of such local optima (as we discuss in

Section 8.3.1).
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Our work also follows that of Hughes [2000], which derived analytic expressions quan-
tifying the probability of one individual having a higher true fitness than another, given
noisy fitness evaluation, in the context of both single and multi-objective evolutionary algo-
rithms. Though several of the derivations are mathematically related, the measures we derive
attempt to characterize the fitness landscape as a whole, rather than a single comparison.

In summary, this investigation is the first to discuss and analyze the effect of fitness
caching in noisy fitness landscapes, and to develop preliminary heuristics for helping choose

the most effective number of sampling repetitions in this case.

8.3. Theoretical Analysis

We will begin from a theoretical perspective, offering a formal description of the problem,
and deriving several mathematical measures that may be useful, before we move on to more
experimental methods.

In this work, we will assume the presence of additive Gaussian (normally distributed)
noise with mean 0. The situation we are concerned with is the repeated sampling of a noisy
fitness function, and as a result of the Central Limit Theorem, the shape of the noise distribu-
tion will always approach a normal distribution when a reasonably large number of samples
is used. However, the mathematical derivations we present below could equally be applied
to other noise distributions, although the resulting expressions may be symbolically and/or
computationally cumbersome. If the mean value of the noise is unknown (and nonzero), then
regardless of any approach, it impossible to determine the true expected value of the fitness
landscape at any point; thus we will only consider unbiased noise with zero mean. We will
also assume that the variance of the additive noise is uniform across the search space — while

this is not always the case, it serves as a reasonable first-order approximation to simplify
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the analysis. The extension of considering noise with location-dependent variance is left as
future work.

We will also make the simplifying assumptions that there is ample memory such that all
encountered fitness values will be cached and are never cleared, and that the computation
time required for the caching is negligible compared to the time required for fitness evaluation.
These assumptions are realistic when fitness evaluation is particularly time-consuming, such
as when optimizing complex simulations with lengthy run-times. In this case, high-capacity
disk-based caching becomes a feasible approach, when the disk-access time for reading a

cached fitness value may be orders of magnitudes smaller than the run-time of the simulation.

8.3.1. Derivation of Measures

Let us consider a “true” (noiseless) landscape function L which has been obscured by some
amount of additive noise (N), which is drawn from a normal distribution with mean 0
and standard deviation of ¢ (N ~ N/(0,0%)).! We will assume the neighborhood-based
search, where the task is minimization (find x s.t. L(z) is a minimum). Without fitness
caching, each time a search algorithm evaluates a point x; in the search space S (z; € S),
a new fitness value L(z1) + N is returned, where N is independently drawn from N(0, o?).
Let 25 be a neighbor of x;, such that L(zy) is greater than L(x;) by a positive amount e
(L(xz9) = L(x1) +¢€). This means that if the search process was repeatedly choosing whether
to move between z; and xs, it would (probabilistically) end up at z;. With fitness caching,
this is not the case. Once fitnesses for x5 and x; have been chosen, they are fixed, or frozen.

This caching is effectively the same as reading values from a new “frozen” noisy landscape

n the context of real-world problems, it may be confusing to think of there being a “true” fitness landscape
with noise being added to it; alternatively, L may be viewed as the true expected value of the noisy function.
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L,,, which is generated from L by adding N (N ~ N(0,0?) to every location in X. If the
fitness value L, (z2) turns out to be smaller than L, (z;), then noise has caused a comparison
between two points to now be wrong (we will denote this as a “false switch”). This freezing
effect means that when fitness caching makes the impact of noise more serious. Furthermore,
rather than noise having a positive “melting” effect that can help a search process escape
local optima (as further discussed in [Levitan & Kauffman, 1995; Rana et al., 1996], and as
is implicit in the design of simulated annealing), fitness caching causes any new local optima
that are created by the noise to be “frozen” in place. We will denote local optima that are
present in L,,, but not present in the original L as “false optima’.

When faced with a new landscape to be searched, we do not know what the landscape
looks like. However, it is possible to probe the landscape for some information, before
starting a search process. Let us assume that we can obtain a reasonable estimate of the
true e-distribution within the landscape. That is, we would like to capture the distribution
of fitness differences between neighboring points (L(x;) — L(z;)V(z;, 2;) € S? s.t. z; and
x; are neighbors in the space). We will denote the probability density function (pdf) for
this e-distribution as P(e). Note that the P(e) distribution is symmetric with respect to 0
because the neighbor relationship is symmetric. (Monte Carlo sampling from L, will give
an estimate of the noisy e-distribution, which may be a tolerable approximation of the true
e-distribution, or may need to be corrected for noise.)

Given the pdf P(e), we will now derive expressions for the likelihood of noise creating
false switches and false optima, in terms of the standard deviation of the noise (o).

For convenience, we will denote the pdf for the Gaussian distribution with mean value,

i, and standard deviation, o by f(x, u, o), defined as follows:
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if Ny > € + N,— False Switch

Figure 8.1. This figure illustrates variables used to determine the existence of
a false switch. N7 and N, represent the added noise to the original nodes, and
e represents the vertical distance between the two original neighbors. False
switches occur whenever N; is greater than € + Ns.

Fosp o) = — () (8.1)

o\ 2

8.3.1.1. False Switch Probability. In Equation 8.2 the inner integral represents the prob-
ability of the noise added to L(zy), Ny being less than the noise added to L(z1), N;. The
inner two integrals (together) represent the probability of a false switch for a given differ-
ence between neighbors’ real fitness values, e. The outermost integral (integrating across all

possible es) computes the probability of a false switch for a given e-distribution P(e).

2/000 P(e) </j; F(NY,0,0) ( M (Ve a)sz) le) de (8.2)

—0o0
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Equation 8.2 can be simplified to Equation 8.3, where Erf denotes the Gaussian error
function. It has been remarked in certain contexts [Hughes, 2000] that the Gaussian error
function (Erf) is computationally very time-consuming to compute, and that more efficient
(though slightly less accurate) approximations may be desirable. However, our approach is
to derive a measure that will characterize the robustness of the fitness landscape as a whole.
This is essentially an offline calculation which will be completed once before initiating a
search process, rather than an online calculation that must be run repeatedly during the
search process. Furthermore, since fitness caching is being used, there is an implicit as-
sumption that evaluating a single point from the fitness landscape takes orders of magnitude
longer than other operations, and the efficiency of numerical approximations is not a primary

concern.

/OOO P(e) (1 — Erf [i]) de (8.3)

8.3.1.2. False Optima Probability. In order to obtain an analytic formula for the prob-
ability of creating false optima, we must make the additional simplifying assumption that
the distribution P(e) is the same throughout the space — i.e., at every x, P(e) is the same

regardless of L(x).
For an arbitrary noise distribution (P(NN)), the probability of being a local optimum in
L, is given by Equation 8.4.

n

/: P(Ny) </:: P(e) U;:Wl P(Nz)dN2:| de) dN, (8.4)
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Similarly, the probability of a given point being a local optimum in both L and L, is

given by Equation 8.5.

n

/j:o P(Ny) (/io P(e) [/;:Nl p(Nz)dNQ] de) dN, (8.5)

False optima are points that appear as local optima after noise is applied, but were
not local optima before noise, thus the probability of being a false optimum is calculated
by subtracting Equation 8.5 from Equation 8.4. Equations 8.4 and 8.5 were for arbitrary
noise distributions, but since we are assuming all noise is additive Gaussian noise, we can

transform them into Equations 8.6 and 8.7 respectively.

Lo ([ o [ o o
o ([ o[ )

Given P(e) (the probability density function for the e-distribution of a fitness landscape),
we now have closed-form expressions for the probabilities of a “false switch” occurring be-
tween any two neighboring points, and the probability of any given point becoming a “false

optimum.”?

2Despite being closed-form mathematical expressions, numerical integration approaches will generally be
required, especially since P(e) may be any arbitrary pdf.
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8.3.2. Fitness Landscapes

The abstract elegance of formally deriving mathematical measures or descriptive statistics
about fitness landscapes must be grounded by the study of concrete fitness landscapes.
This partially serves to validate the derivations, but more importantly it helps us judge
the appropriateness of any simplifying assumptions that were made in order to make the
mathematics tractable.

For our fitness landscapes, we selected four noiseless fitness functions that are often
studied in the context of real-valued black-box optimization, and which exhibit differing
landscape features (such as multi-modality /nonconvexity). Specifically, we chose the sphere,
Rosenbrock, Schwefel, and Rastrigin functions (adapted from [Hansen, Finck, Ros, & Auger,
2009a]). These noiseless landscapes are assumed to be the “true” underlying functions, which
we will combine with varying levels of additive Gaussian noise to create the “obscured” noisy
fitness landscapes that must be searched. Surface plots of the 2-dimensional versions of these
fitness landscapes are shown in Figure 8.2, shown for illustrative purposes to communicate
the general shape of these spaces. All results presented here used the 10-dimensional ver-
sion of these functions, where each dimension was discretized on the domain [—5,5] at a
resolution of 0.05, creating a discrete search space of size 201'° ~ 1.1 x 10?®. The general
mathematical function to generate the N-dimensional case for each landscape is displayed
below the graphics in Figure 8.2.

In Figure 8.3, kernel density distribution plots® show the e-distributions (distribution of

differences between the “real” fitness values at neighboring locations in the fitness space)

3Kernel density distribution plots provide a way to visualize distributional information that avoids the
artifacts caused by bin-size choices in histograms.
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Figure 8.2. This figure shows 2-D versions of the sphere, Rosenbrock, Schwefel,
and Rastrigin functions we used as our fitness landscapes. The equations are
shown below each plot.

for each of these landscapes. Note that the different distributions vary significantly in shape

and range of values.

8.3.3. Empirical Measure Validation

We predicted the number of false switches and false optima in each fitness landscape using the
measures defined in Section 8.3 above and an approximate e-distribution defined by sampling
5000 differences between neighbors’ real fitness values. Then we observed the real probability

of false switches being created by noise by testing 10,000 pairs of neighboring points, which
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Figure 8.3. This figure shows the e-distribution (fitness differences between
neighboring locations) for each fitness landscape.
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Figure 8.4. We predicted the probabilities of false switches and false optima
occurring using the measures presented in Section 8.3 and observed the actual
probabilities that each occurred by adding various amounts of noise to each
function and evaluating the resulting proportions of false switches and false

optima.
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were evaluated before and after varying amounts of Gaussian noise was added. Similarly,
we used a Monte Carlo method (testing 10,000 points) to estimate the real probability that
a point becomes a false optimum as a result of differing magnitudes of Gaussian noise. As
shown in Figure 8.4, the formulas we derived for these two measures closely approximate the

directly observed measures.

8.4. Experiments

We are further interested in whether these or other simple measures can be useful in
predicting the performance of an evolutionary search technique on a noisy landscape. In
particular, it would be most useful to be able to choose the number of times a noisy function
should be evaluated and averaged, to enable a search mechanism to reach very good locations
in the space with as few function evaluations as possible. Specifically, we ran experiments
at varying noise levels to determine the number of evaluations required by a stochastic hill
climber to reach an average fitness value that is in the best 0.0001% of the landscape. These
numbers of evaluations are then scaled by the number of times the function would need to
be evaluated to reach their respective noise levels. The pseudocode for the simple random-
mutation hill climbing algorithm is given in Table 8.1.

The noise level (standard deviation of noise) for which the search progresses most rapidly
is denoted 0;4eq; (Which will vary for each landscape). See Figure 8.5 for an illustration of
this process.

We considered four heuristic methods for using a landscape’s e-distribution to predict
Oidear @nd compared the number of evaluations required by the hill climber at each method’s

predicted ;4.4 to those required at the true o;geq.



Given a (memoizing) noisy landscape function L,
and a function neighbor(x) which returns a new
location by increasing or decreasing x along a single
randomly chosen dimension:

Uk W=

6.
7.
8.

Let Tpest = &

Choose x randomly from S (the search space)

If Zpest = @ or Ly(x) < Ly (Tpest): Set Tpest = T
If evaluation limit exceeded: Return xp.s;.

If x has been compared to all of its neighbors

and is a local minimum: Go to Step 2.

Let o’ = neighbor(z)

If L,(2") < Ly(x): Set x =2

Go to Step 3
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Table 8.1. Pseudocode for a random-mutation hill climber, which restarts

when stalled.

(Oigeal » Minimum Evaluation #)

Fitness Value

b) £
=
Expected Performance Lines %
n
S
=| 3.
o S
x )
Threshold Value b8 %
S ®
©
=}
©
>
w

Evaluations Required at Given Noise Level

/

*/

Standard Deviation of Noise

Figure 8.5. a) Each shaded line shows fitness values reached after some number
of evaluations, for a given noise level, o,. Using this information we calculated
the number of evaluations it took to reach a threshold value, and scaled this
by the number of replicate evaluations required to reduce noise to the specified
level (0,). b) This scaled number of evaluations is plotted at each noise level.
We denote the noise level corresponding to the minimum number of evaluations
as 0;qeqr, Which is the “sweet spot” target for noise reduction.

The four heuristics for predicting o;4.; are listed below. In order to calibrate the heuris-

tics, it was necessary to use scaling factors based on the true ;4.4 for the landscape. We
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then tested the heuristics by applying them to each landscape in turn, in order to evaluate

whether they could capture the differences between the landscapes.

e Fixed Noise Level: The geometric mean of the ;4.4 for each landscape is 1.91
and this constant noise value was used as the 0rized Noise Lever- Lhis is the most
naive heuristic, as it treats all landscapes the same, without making use of the e-
distribution information at all. It is included mainly as a baseline for comparison.

e Direct Ratio: The geometric mean of the ratio of the median of each e-distribution
to the ;4. for each landscape is 3.97. We calculated opjrect ratio by dividing the
median of each landscape’s e-distribution by this ratio.

e Fualse Switch: The geometric mean of the proportion of false switch values corre-
sponding to the 0,4 for each landscape is 0.084. The standard deviation of noise
which predicts a proportion of false switch value of 0.084 is the oruse switen

e Fulse Optima: The geometric mean of the proportion of false optima values corre-
sponding to Gigeq for each landscape is 5.16 x 107°. The standard deviation which

predicts this value is the orgise Optima-

8.5. Results and Discussion

To compare these methods on each of the four landscapes, we calculate the inefficiency
ratio as the number of evaluations required by each method’s prediction for cizeq (i-e.,
OFized Noise Level; ODirect Ratio; OFalse Switchs O False Optima) divided by the number required at
the true o;4.4;. Note that an inefficiency ratio of 1.0 would be a perfect prediction, and also
that ratios higher than 20 have been cut off, due to computational constraints.

To summarize the performance results from Figure 8.6:
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Method Comparisons
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Figure 8.6. This figure shows how inefficient the standard deviation chosen
by each method is by calculating the ratio of evaluations to that required at
optimal noise level, 0;4.0;. A perfect solution would have an inefficiency ratio
of 1.0.

(1)

None of the methods performed well on the Rosenbrock landscape. The Rosenbrock
function is sometimes referred to as a “banana function” due to its long bending
valley which must be followed to reach the global optimum. The failure to predict
an optimal level of noise may be due in large part to the importance of traversing
this valley, where the fitness gradient is not very strong. In other words, the initial
sampling of the whole space to determine the e-distribution is misleading, since a
particular region of the space (the valley floor) is much more important for search
performance than the space at large, and requires lower noise values to traverse.
The fixed noise level method performed quite poorly on all but one landscape.
In general, this is not too surprising. We expect that different landscapes will
require different optimal noise levels, and choosing a fixed level value to apply to all
landscapes is unlikely to perform well.

There is no clear winner among the other three methods: the false optima and direct
ratio methods were each best on certain landscapes, but the false switch method also

generally performed well. This result is somewhat disappointing, in that heuristics
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using our derived metrics (false switches and false optima) do not have a strong
advantage over the simpler approach (direct ratio) of scaling by the median value

from the e-distribution.

While these results are not decisive, it is somewhat encouraging that the three methods
using information from the e-distribution serve as better predictors than the most naive
approach. This shows that the heuristics used are at least partially correlated with choices
for ¢;4eq1, and perhaps improved mappings may be developed along similar lines, in order to

offer prescriptive guidelines for choice of sampling repetitions based on this information.

8.6. Future Work and Conclusions

The experimental results we have presented are based only on an examination of four
fitness landscapes, which is too small to be a good representation of the types of fitness land-
scapes encountered in real problems. Furthermore, it has been argued that some of these
particular test landscapes may not be the most appropriate choice for benchmark functions
for evolutionary algorithms [Whitley, Mathias, Rana, & Dzubera, 1995]. Accordingly, fur-
ther studies along similar lines are called for, involving a greater diversity of noisy fitness
landscapes.

However, perhaps a more significant challenge for the current approach is that the search
performance on these landscapes appears to be significantly different enough that none of the
heuristics we investigated served as a good predictor for all four landscapes. In particular, the
failure to predict a good noise level for the Rosenbrock landscape merits further investigation.
It is possible that a fundamentally different approach will be needed. One hypothesis is that
knowledge of the global e-distribution for a landscape is insufficient to make a good prediction

of what the optimal noise level would be, and thus additional knowledge is required. This may
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be because intelligent search techniques find relatively good solution areas quickly, and thus
spend very little time in the large poor-performance areas of the space, in which case a more
biased approach for sampling e-distributions might be fruitful (e.g., taking inspiration from
[T. Smith et al., 2002]). For instance, one could imagine running a sequence of searches,
bootstrapping the e-distribution from the points that were encountered by the previous
search on the noisy landscape, thus refining the estimates for optimal sampling choices in
later searches.

In addition to their role in meta-heuristic search processes, fitness landscapes also play
an important role in the study of many complex systems, and may provide a lens for view-
ing adaptive or evolving systems in new and enlightening ways (c.f. Kauffman’s work on
evolutionary landscapes [Kauffman, 1993]). It would be interesting to investigate whether
there are interdisciplinary implications for studying frozen noisy landscapes, in relation to
processes that occur in real biological systems.

An improved understanding of the extent to which noise can be present in a fitness land-
scape without seriously inhibiting successful search and adaptation in that space is a broad
but desirable goal, which would significantly advance the field of search/optimization when
dealing with uncertain problems. Our present research provides some progress toward this
goal in the specific context of fitness caching, but the path is far from clear, and significant
work remains to be done in this direction. The lack of prior literature on fitness caching
with noise may suggest either that the combination has not been given serious considera-
tion, or possibly that fitness caching is not an advisable approach when dealing with noisy
search problems. While we believe that in many cases it would still prove beneficial, this
is ultimately an empirical question, and one that we hope will be resolved by future work

using fitness caching in noisy environments.
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In conclusion, this chapter offered a brief foray into the study of the interactions between
noisy landscape sampling and fitness caching. We presented and verified analytic formulas
for two measures that could be useful for predicting the impact of noise on the performance of
fitness-caching neighborhood based meta-heuristic search processes in discrete fitness land-
scapes. We also explored several heuristics for choosing an optimal sampling level under
these conditions, and while none of these heuristics offer perfect solutions to this problem,
they could provide reasonable initial choices when there is no a prior: information about
what sampling level to use for an unknown fitness landscape. Additionally, they provide a
starting place for developing better heuristics for this problem. However, further research is
required before we can offer prescriptive recommendations for noise level reduction method-
ology. Some of the necessary research is carried out in Chapter 9, where varying levels of
samples are used for noise reduction in the fitness landscapes associated with real ABM ex-
ploration tasks, using a wider variety of search algorithms (hill climbing, genetic algorithms,
simulated annealing, and random search), and comparing the results both with and without

fitness caching.
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CHAPTER 9

Comparative Benchmarking in ABM exploration

“There is nothing like looking, if you want to find something...
You certainly usually find something, if you look, but it is not
always quite the something you were after.”

— J.R.R. TOLKIEN, The Hobbit

“All generalizations are false, including this one.”
— MARK TwAIN

As Tolkien reminds us, the act of searching for something does not ensure that you will
find it. Often you may find something else instead, which may be interesting in its own
right, but isn’t what you set out to find. When exploring the parameter space of agent-
based models, this can be beneficial, since each interesting finding may shed light on some
aspect of model behavior. Nevertheless, there are many situations where you have a specific
goal in mind (e.g., finding vee flock formations, or calibrating a model to real-world data),
and you really do want to find parameters that best accomplish that specific task, rather
than parameters that do something else. Thus, it is important to measure the efficacy
of search methods in performing ABM exploration tasks. The case studies presented in
Chapters 4-7 already showed that genetic algorithms were useful and effective for ABM
exploration tasks, by digging deep into relevant research-caliber modeling problems. In
contrast, the focus of this chapter is on breadth, not depth. This chapter provides the first

large-scale comparative study of the genetic algorithm’s performance on a wide variety of
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models and tasks, with various levels of sampling, both with and without fitness caching,
and judged against other blackbox metaheuristic search algorithms including random search,
hill climbing, and simulated annealing.

No set of experiments in this domain can be truly comprehensive, as countless other agent-
based models could be explored, and there is also no shortage of metaheuristic search algo-
rithms (such as particle swarm optimization [Kennedy et al., 1995], and harmony search[Geem,
Kim, & Loganathan, 2001]) that remain untested. However, unlike prior studies that focused
on a single model or a single search algorithm, this work provides the breadth necessary to
draw more general conclusions about genetic algorithms’ relative efficacy. It also provides
some observations regarding the prevalent stochasticity of ABMs and its impact on search
performance, and analyzes the utility of fitness caching for real-world problems. This rigor-
ous set of experiments has been performed to obtain sufficient sample data to judge statistical
significance, and as a result we can observe general trends and interesting patterns in the
data. Generalizations are dangerous creatures, however, as Mark Twain mirthfully reminds
us. [ will leave it to the reader to decide whether all generalizations are indeed false, but the
broader point stands that one must be cautious in applying them. Thus, this work presented
in this chapter has no grandiose aspirations of being the last word on the subject. Rather, I
view it as the opening sentence toward a healthy debate about search algorithm performance
in this domain. Some may criticize my (necessarily constrained) choices of certain search pa-
rameters (e.g., the GA’s mutation rate, or the cooling schedule for simulated annealing), and
perform follow-up studies examining alternative choices. Others may discover that search
performance differs on the specific model they are exploring, and wish to compare their ABM
search task against the tasks described here. Arguably, the greater contribution of this chap-

ter may be in developing a benchmark set of models and tasks to productively frame this
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discussion, rather than in the specific numerical results obtained (although these results are
themselves interesting). (The benchmark tasks, as concrete implementations of the QBME
framework laid out in Chapter 3, are also valuable for demonstrating the breadth of model
exploration tasks and how they can be successfully posed using a search-based paradigm.)
Finally, we take inspiration from an erudite epigram of Turing award-winner Alan Perlis
[1982]: “Simplicity does not precede complexity, but follows it.” So it is with the messy task
of evaluating the performance of metaheuristic search algorithms. Only by wading through
a sea of complex processes and data can we arrive at the far shore where we will discover
simple guidelines and practicable solutions. One can stand forever on the shore, hoping
the ocean will be shallow, the water will be warm, and that there aren’t any sharks — but

progress will never be made until we get our feet wet!

9.1. Description of Models and Tasks

This chapter presents a study of genetic algorithms with regard to their suitability for
various tasks related to the development, exploration, and analysis of agent-based mod-
els. Specifically, we perform a comparative analysis of genetic algorithms against a base-
line method (random search), as well as two comparable metaheuristic search techniques
(random-mutation hill-climbing and simulated annealing). Because this is the first com-
parison of its kind, there is no standard set of tests or benchmarks in this domain against
which search methods may be compared. We chose a range of models (simple, classic, and
complex) and designed relevant model exploration tasks associated with each model. These
“benchmark” tasks provide a basis on which the search methods will be judged. We selected

models from the NetLogo sample models library, which is a large collection of agent-based
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| Model | Description | Task | Dim. |

Fire forest fire spread find phase transition 1
Segregation early social science ABM find causes of segregation 2
Ants ant food foraging find most efficient foraging 2
Fireflies synchronizing flashes what encourages synchrony? |4
Flocking flock /swarm motion search for volatility 5
Daisy World illustrates Gaia hypothesis model error checking 6
Ethnocentrism evolution of ethnocentrism extreme scenario 6
discovery & comparison
Heatbugs abstract bio-inspired model | agent clustering/congregating | 7
Wolf Sheep population dynamics model calibration 9
Predation

Table 9.1. Benchmark ABMs and associated tasks chosen for evaluating search
methods. The models are listed in increasing order of search space dimension-
ality (shown in the right-most column), which is equal to the number of free
model parameters in the search task.

models ranging from simple example models to replications of published research models
from various disciplines. The list of models/tasks is shown in Table 9.1.

These tasks were purposefully chosen to contain considerable variation in complexity and
search difficulty. While search difficulty is challenging to quantify (a priori), one contributing
factor is the dimensionality and size of the search space to be explored. In particular, the
four earlier tasks (in Table 9.1) were chosen such that the search space was small enough to
be fully enumerated (exhaustively explored). In other words, for these models it is possible
to sample all combinations of settings of the free parameters with sufficient resolution (and
with ample repeated sampling for statistical confidence) to obtain a “ground truth” map of
the fitness landscape. This “ground truth” landscape will be useful for determining whether
search processes have indeed found global optima, or whether they have become trapped in

local optima (if they exist).
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Despite their simplicity, these modeling tasks are not mere toy examples — they represent
interesting questions about model behavior of real agent-based models. However, sophisti-
cated search methods such as genetic algorithms are possibly unwarranted on these smaller
search spaces; it is feasible to do a factorial-design enumeration of the space, which would
give complete confidence in the results. Even so, having an efficient search mechanism to
more quickly answer questions about the model in a heuristic manner is still useful, particu-
larly for exploratory analysis of model behavior. Furthermore, these tasks provide a baseline
that we would want any more sophisticated parameter search technique to handle without
difficulty. Although the search spaces and dimensionality are small, some of the character-
istics of the fitness landscapes encountered in these simple tasks may also be relevant to
larger higher-dimensional parameter spaces. On the other hand, it may only be in higher
dimensional spaces that a genetic algorithm will be able to take advantage of building blocks
(composed of sets of parameters), and higher dimensional spaces are also more likely to
have large numbers of local minima/maxima, so we must be careful about drawing general
conclusions from these simple cases.

The later five (higher-dimensional) tasks involve search spaces that are too large to be
enumerated in practice, so the true global optima is not necessarily known. However, these
tasks are arguably more realistic in terms of the number of parameters that one might be
searching in a typical ABM search task. Each of the search tasks will be described in greater
detail.! The exact versions of the models used in the search experiments presented here are
available for download from: http://forrest.stonedahl.com/thesis/benchmark models
.Z1ip.

n fact, the level of detail in the sections below borders on the tedious — I apologize for this in advance, but
feel that little can be done to remedy this without sacrificing the scientific replicability of these experiments.
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Figure 9.1. The NetLogo Fire model user interface.

9.1.1. Fire (FireVariance and FireDeriv)

The NetLogo Fire model [Wilensky, 1997¢] (see Figure 9.1) demonstrates a critical point (or
phase transition between two different behavioral regimes) in a simple percolation model.
The Fire model has just one parameter density, which controls the density of the forest.
While the simplicity of the model means that sophisticated algorithms are not necessary in
order to detect this phase transition, it will provide a straightforward test case for searching
for critical points, since the system’s behavior is already well understood.

We actually performed two separate search tasks with the Fire model?, though they both
had the same common goal of identifying the critical threshold for the density parameter. For

the FireVariance task, we searched for parameter settings that would maximize the standard

2Technical note: for our experiments the Fire model’s world size was reduced from 251x251 to 99x99 patches,
to improve efficiency. Qualitative model behavior was unaffected by this change. Unless stated otherwise,
all tasks are based on the models from the NetLogo 4.1.2 model’s library.
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deviation of the amount of forest burned (across multiple runs with the same parameters.
In other words, we’re looking for parameters where sometimes only a few trees burn and
sometimes the whole forest burns. For the FireDeriv task, we searched for parameter settings
that maximized the discretely approximated derivative (a.k.a. difference quotient) of the
average amount of forest burned with respect to the density parameter (Adensity = 1.0). In
other words, we were looking for parameters where a small change in density would cause
a large change in the amount of forest burned. As mentioned in Chapter 3, these two
approaches highlight different aspects of phase transitions, but either can be used to identify
the phase transition in the Fire model. For both cases, the model is initialized (with the
SETUP procedure) and run (the GO procedure) until there are no fires remaining, at which
point we measure the percentage of the initial forest that burned. The density parameter is
allowed to range between 1% and 99% by increments of 0.01 (for a search space composed
of 9801 unique points). For both cases, the measures (derivative and variance-based) are
averaged across some number of repeated model runs (see the various sampling amounts in
Section 9.2.1 below) using the same parameter settings but with different pseudo-random

number generator (PRNG) seeds.

9.1.2. Segregation

The NetLogo Segregation model [Wilensky, 1997d] (see Figure 9.2) is a replication of one of
the earliest ABMs of how strong patterns of societal segregation may emerge from “weak
discrimination” by individuals, based on the work of Thomas Schelling [Schelling, 1978].
The characteristic result of this model is that there is a disproportionate macro-level re-
sponse to micro-level discriminatory practices. However, another surprising feature of this

model is that having individual agents each seek maximal similarity (that is, being highly
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Figure 9.2. The NetLogo Segregation model user interface.

discriminatory) yields much less overall segregation than if agents are only moderately dis-
criminatory. “Surprising” results like this are characteristic of the emergent behavior found
in many agent-based models. The explanation, in this case, is that when agents are too
strongly discriminatory (or “picky”), the model never settles down to a fixed equilibrium.
Agents continually move from one location to another, almost always remaining unhappy
with their surrounding neighborhood (unless the world population density is extremely low).

For this task, we searched for parameter settings that would result in maximal macro-level
segregation by varying two parameters: the number of agents (from 500 to 1500 by increments
of 10) and the percent-similar-wanted parameter (from 0 to 100 by increments of 1), which
controls the micro-level discrimination. The complete search space thus contains 10,201
points, which is very manageable for enumeration. The model was initialized (SETUP),
then run (GO) for 200 ticks (or until all agents were “happy” with their current locations),
after which the global percent-similar was measured. This measure (again averaged across

some number of repeated model runs) was maximized.
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Figure 9.3. The NetLogo Ants model user interface.

9.1.3. Ants

The NetLogo Ants model [Wilensky, 1997a] (see Figure 9.3) is a pheromone-based ant for-
aging model, which was previously used by Calvez and Hutzler [2005] for a case study on
using genetic algorithms for tuning parameters in agent-based models. Thus, this model is
a logical choice to allow comparison with previous work — specifically this task will mimic
Calvez and Hutzler’'s Ezxample 1, which is about searching for parameters that yield the
largest communal food harvest during a specified time period.

To compare results with Calvez and Hutzler, it was necessary to use an old version of
the NetLogo Ants model, since the Ants model included in the NetLogo model’s library
was revised in 2005 to use a larger world grid and have the food deposits positioned further
from the nest. This revision significantly changed the quantitative behavior of the model.

Unfortunately, Calvez and Hutzler did not explicitly state which version of the NetLogo
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Ants model they were using. Despite multiple attempts to contact the authors regarding
a number of unspecified details in their paper (primarily about the details of the genetic
algorithm they employed) I received no response. As a result, based on the publication date
of their paper (2005), I estimated they had used NetLogo 2.1, which was the latest publicly
released version of NetLogo in 2004. I also verified that there were no behavioral differences
between the Ants model in NetLogo 2.1 and the previously released version (NetLogo 2.0.2)
earlier in 2004, in case they had used that version instead. Furthermore, the NetLogo 2.1
version of the model qualitatively matches the model as depicted and described in Calvez
and Hutzler’s paper. Thus, I feel fairly confident that I am using the same model.

There are 3 explicit global parameters of this model (as well as several others implicit
within the model code, which could be parameterized), but Calvez and Hutzler fixed one
of them (the total number of ant agents) at the constant value of 10, thus allowing just 2
parameters to range freely during the search process. These two parameters are the diffusion-
rate (ranging from 0 to 99 by increments of 0.1) and the evaporation-rate (also ranging from
0 to 99 by increments of 0.1). (The complete search space size is thus 982081 - almost 1
million combinations.) For this task, we measure the total amount of food harvested by the
ants between 101 and 200 model ticks (inclusive), and we seek to maximize this measure

(averaged across some number of repeated trials).

9.1.4. Fireflies

The NetLogo Fireflies model [Wilensky, 1997b] (see Figure 9.4) examines mechanisms by
which fireflies might synchronize their flashing together, as exhibited in nature (e.g., Pterop-

tyz cribellata, Luciola pupilla, and Pteroptyxr malaccae — particularly striking in the large
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Figure 9.4. The NetLogo Fireflies model user interface.

firefly swarms of Southeast Asia). The Fireflies model is based in part on the research of
Buck [1988] and Carlson and Copeland [1985].

In this model, there are two qualitatively distinct strategies (controlled by the strategy
parameter) that the fireflies can use to try to synchronize with each other: delay and advance.
For the most part, the delay strategy appears to consistently achieve global synchrony,
whereas the advance strategy seems less effective, particularly at synchronizing the whole
population. This is interesting, and begs the question: under what conditions is the advance
strategy most effective at creating synchrony? Thus, our search task for the Fireflies model?
fixes the strategy parameter to advance, and searches for parameters that lead to maximal
synchrony. The number (of fireflies) parameter range goes from 10 to 50 in increments of
5, the flashes-to-reset ranges from 1 to 4, the cycle-length ranges from 5 to 20, and the
flash-length ranges from 1 to 5. Although this task is searching a higher dimensional space

than previous tasks, the size of the search space (only 2,880 combinations) is actually quite

3Again, for efficient experimentation we use a version of the model with a reduced world size.
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small, due to the limited range and resolution for varying each parameter. For this task,
we designed a special synchrony-measure (included in the downloadable benchmark model),
which sums up the absolute difference (in modular arithmetic) between the internal clock
states of each firefly with every other firefly, and then transforms and normalizes this value
to be between 0 (unsynchronized) and 1 (completely synchronized). The model is initialized
(SETUP) and run (GO) for 2000 ticks, and for each run the median* value of the synchrony-
measure between 1900 and 2000 ticks is reported. This median synchrony measure is further
averaged (using the mean, not median) across repeated model runs with the same parameter

settings.

9.1.5. Flocking

As described earlier in Chapters 3 and 4, the NetLogo Flocking model [Wilensky, 1998] is
based on Reynolds’ classic “Boids” [C. W. Reynolds, 1987], and seeks to produce realistic-
looking collective animal motion (such as flocking birds or schooling fish). This benchmark
task is very similar (though not identical) to the tasks discussed in Chapter 4. In this
case, we will be looking for flock volatility in the following sense: we are interested in what
parameter settings would cause all of the birds to be simultaneously turning by large amounts
at some point in the model (and we are curious to see what this pattern might look like).
More specifically, during each tick, we are looking at the absolute heading change for each
bird and choosing the minimum value across all birds. Thus, the turning measure is only
registering the “weakest link” — if a single bird isn’t turning at all, then the whole flock’s

volatility score for that tick is 0. However, we record the maximum of this measure across

“In some cases the median is a more appropriate measure of “average” or characteristic model behavior,
since it is not influenced by outliers.
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ticks (for 200 model ticks), so if there was ever a (simulated) moment when all of the birds
were drastically turning, we will capture it. Finally we take the average value across some
number of repeated model runs, and search to maximize this value. This task demonstrates
one of the many combinations achievable by combining/condensing measures across different
levels in different ways, as outlined in the QBME framework in Chapter 3.

The population parameter is fixed at 50 birds, but the five other model parameters are
allowed to vary as follows. The vision parameter ranges from 0 to 10, the minimum-separation
parameter from 0 to 5, and the max-align-turn, max-separate-turn, and max-cohere-turn pa-
rameters each from 0 to 20. In all cases, the increment of the range (resolution for searching
the parameters) is 0.25. Note that the size of the search space here has skyrocketed to over
450 million parameter combinations, and enumeration of this space (at this resolution) is no

longer a feasible strategy:.

9.1.6. Daisyworld

The NetLogo Daisyworld model [Novak & Wilensky, 2006] (see Figure 9.5 is based on the
model proposed by Watson and Lovelock [1983]. This model illustrates the Gaia hypothesis,
and how Earth can be considered a single, self-regulating system including both living and
non-living parts. Several years ago when examining this model, a colleague® and I discovered
that there was a bug in its code, resulting in aberrant behavior for certain model parameter
settings. As an example of an authentic ABM bug “in the wild”, this model provided a
natural opportunity to test the effectiveness of genetic algorithms for search-based anomaly
detection, as a form of model checking or error testing. That is, could a GA-based search have
picked up the same discontinuity in model behavior that we (humans) had discovered using

SDaniel Kornhauser
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Figure 9.5. The NetLogo Daisyworld model user interface.
an interactive visual tool for plotting slices of the parameter space? Admittedly, the design
of this task is a posteriori, since we already knew that a bug existed and the exploration
measure was constructed such that it would be possible to find (although not trivial to locate,
since the bug only manifested itself for a very narrow range of parameter settings).

For our exploration of the Daisyworld model®, the anomaly we are trying to detect
is a discontinuity in model behavior given a small change in an input parameter. Our
exploration task is actually quite similar to the phase transition detection task employed
for the Fire model. This overlap is fortunate, because it is plausible that model analysts
looking for critical points and thresholds may at the same time uncover certain classes of
model bugs/errors. In both situations, we are interested in maximizing the absolute change
in some output measure (in this case we will use the total daisy population, although the

discontinuity would be observable with many other output measures) given a small change in

6For this benchmark task we use the NetLogo 4.0.3 version of Daisyworld, as this is the version where the
bug was discovered. Again, for search efficiency we reduced the world size to roughly 50% of that in the
official Daisyworld model.
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some parameter (in this case, the albedo-of-whites parameter). Specifically, we initialize the
model (SETUP), run the model (GO), and measure the average (mean) number of daisies
between 400 and 500 ticks. We do this for multiple repeated model runs and again take
the average. We then calculate the discrete derivative of this value with respect to albedo-
of-whites — that is, the change in the average number of daisies divided by the change in
albedo-of-whites, where Aalbedo-of-whites is fixed at 0.01. The task is then to maximize the
absolute value of this approximated derivative — thus finding those parameter settings where
a small change in albedo-of-whites results in a large change in model behavior.

The parameter space to be searched includes 6 parameters: albedo-of-surface, albedo-of-
whites, and albedo-of-blacks all range from 0 to 1 by increments of 0.01, start-pct-blacks and
start-pct-whites range from 0 to 50, and solar-luminosity is allowed to range continuously’.
The use of a continuous parameter makes it impossible to quantify this size of this search
space in a way that is directly comparable to previous size calculations — however, the search

space size when excluding that parameter is still over 26 million combinations.

9.1.7. Ethnocentrism

The NetLogo Ethnocentrism model [Wilensky & Rand, 2003] (previously pictured in Figure
1.1) is a classic model originally developed by Axelrod and Hammond [2003], demonstrating
a possible mechanism by which ethnocentric behavior could arise as a result of locally played
iterated prisoner dilemma games in an evolving population. This model is a good choice in

part because its behavior has been carefully analyzed, and because particular effort went into

7Technically this “continuous” range is discretized by the precision of the computer’s representation of
floating point numbers, but this resolution provides an indistinguishable approximation of the continuous
range, for our purposes here.
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making sure that this NetLogo model was an accurate replication of Axelrod and Hammond’s
original model [Wilensky & Rand, 2007].

The main result from the Ethnocentrism model was that for a wide variety of parameter
settings, “ethnocentric” behavior naturally evolves and dominates the alternative “altruist”,
“egoist”, and “cosmopolitan” strategies in the population. A little experimentation reveals
that egoist behavior can also be easily achieved in the model by changing the payoff structure
so that the cost of giving is greater than the benefit of receiving; however, it is not clear
what parameter settings (if any) might induce largely altruistic populations. Thus, for our
exploration of this model®, we will seek model parameters that are most favorable to altru-
ists. This particular extreme scenario discovery task is closely related to model sensitivity
analysis. Since the major result of the model is the dominance of ethnocentric behavior,
finding parameters where an alternative strategy is surprisingly dominant (or at least highly
effective) may provide insight about model robustness.

For this task, we fix two model parameters, immigrant-chance-cooperate-with-same and
immigrant-chance-cooperate-with-different, at 0.5, to ensure there is no particular bias of new
agents toward one of the four strategies.” We allow 6 model parameters to vary: immigrants-
per-day ranges from 0 to 10, mutation-rate ranges from 0 to 1 in increments of 0.001, and the
cost-of-giving, gain-of-receiving, death-rate, and initial-ptr all range from 0 to 1 in increments of
0.01. Our specific measure is the average (mean) fraction of the population that is altruistic

between 200 and 300 model ticks.

8 Again, for efficiency we used a version of the model with world-size reduced by roughly 50%.

9f we allowed these to vary, then the GA search would give us the unsurprising (and relatively uninteresting)
result that “if you only allow new (immigrant) agents to be altruists, and you have a high immigration rate
and low mutation rate, then the population will be highly altruistic!”
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Figure 9.6. The NetLogo Heatbugs model user interface.

9.1.8. Heatbugs

The NetLogo Heatbugs model [Wilensky, 2004] has become a classic ABM of abstract emer-
gent behavior, having been implemented in most major ABM toolkits since Swarm [Minar
et al., 1996]. Individual bugs locally add heat to the environment, but also have tempera-
ture thresholds in order to be happy, and they will move if they are either too cold or too
warm. However, each bugs movement and heat dispersal, as well as the global heat-diffusion
rate, affects the other bugs in the environment. Running the model with typical parameter
settings tends to result in a large number of small scattered bug clusters.

For this task, we are interested in discovering whether the Heabugs model'® can ex-
hibit extreme spatial clustering/congregating of agents. Specifically, we initialize the model
(SETUP), run it (GO) for 1000 model ticks, and then calculate the average distance from
1OAgain, we used a reduced-world-size version of the model. We also transformed the original model’s max-
ideal-temp and max-output-heat parameters into ideal-temp-range and output-heat-range parameters. This

transformation does not affect model behavior, and it avoids the problem of randomly-generated parameter
settings having a larger min-ideal-temp than max-ideal-temp.
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each bug to all other bugs. We then seek to minimize this measure — thus, the highest
fitness behavior would be if every single bug was identically co-located. We hold the num-
ber of agents constant (bug-count = 25), while allowing 7 other model parameters to vary:
evaporation-rate and diffusion-rate each range from 0 to 1 in increments of 0.01, min-ideal-temp
ranges from 0 to 200 (integers), and ideal-temp-range, min-output-heat, output-heat-range, and

random-move-chance all range from 0 to 100 (integers).

9.1.9. Wolf Sheep Predation

The NetLogo Wolf Sheep Predation model [Wilensky, 1997¢] (introduced previously in Chap-
ter 3 — see Figure 3.2) is a fairly simple simulation of predator-prey interaction in a closed
ecosystem. This model demonstrates the oscillating dynamics that can result from food
chain relationships. We will use this model for a calibration task, to determine how well
it can exhibit a specific reference pattern. For a reference pattern, I chose the historical
predator-prey dynamics of wolves and moose on Isle Royale in Michigan, U.S.A. [Vucetich &
Peterson, 2009; Peterson, Page, & Dodge, 1984]. Isle Royale has been the site of an intense
ongoing research effort since 1958, tracking the habits, numbers, and patterns of wolves and
moose that live in this (essentially) closed ecosystem. As a result, over 50 years of popula-
tion (abundance) data is publicly available on the Wolves and Moose of Isle Royale project
website [Vucetich et al., 2011]. Figure 9.7 shows a plot of this data.

Admittedly, the Wolf Sheep Predation model is an abstract model of predator-prey dy-
namics and was not specifically designed for modeling the Isle Royale scenario, these two
species, or a host of factors (such as disease) which affected the population dynamics of the
real world data. Even so, I believe it is interesting to compare how well the patterns produced

by this abstract model can match up with reality. Furthermore, even if you do not accept
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that comparison with this specific data is relevant, this type of calibration task is certainly

important for ABM analysis, and can thus serve as a useful benchmark for performance

(which is what we are using it for here).

One issue for this calibration task is that the model does not have any concrete time scale

associated with it, whereas the reference pattern data is indexed by year. Since it is not

at all clear how many model ticks should be equivalent to one real year, we introduced an

additional model parameter named ticks-per-year. In doing so, we allow the search process

itself to determine an appropriate time scale conversion that provides the best match with

the data.
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To measure degree of calibration, we measure Pearson’s product-moment correlation
coefficient between the simulated wolf population history (measured every TICKS-PER-
YEAR ticks) and the real wolf population history, and also between the simulated sheep
population and the real moose population. These two correlation coefficients (which may
range between -1 and 1) are summed together, and we seek to maximize this value — thus
perfect correlation with both data sets would yield a calibration score of 2. Note that the
use of correlation coefficient provides more flexibility to the match, as opposed to requiring
the model to match the exact numbers of wolves and moose. (This flexibility can also be
interpreted as letting one wolf in the model stand for X real wolves, and one sheep in the
model stand for Y real moose.) After all, we are more interested in the qualitative pattern
than in facsimile reproduction of the history.

There was another technical issue with the Wolf Sheep predation model, which is that
under certain parameter settings this model can produce exponential sheep growth that can
quickly consume all of the computer’s RAM and possibly cause the process to hang. Since
these explosive patterns are never going to be a good match with the real data anyway,
we chose to stop the simulation and return a bad fitness score (—2) whenever the sheep
population crossed a threshold of 10,000. While these technical details may seem minor,
they are the typical sort of little issues that must be resolved to successfully perform search-
based ABM exploration and analysis.

For this task we varied all 9 of the model parameters (excepting parameters like show-
energy, which only affect visualization of the model). The boolean parameter grass? was
allowed to be either TRUE or FALSE. All other parameters were integers: the initial popu-
lations (initial-number-sheep and initial-number-wolves) ranged from 1 to 250, grass-regrowth-

time and wolf-gain-from-food both ranged from 0 to 100, sheep-gain-from-food ranged from
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0 to 50, and wolf-reproduce ranged from 0 to 20, sheep-reproduce ranged from 1 to 20, and
ticks-per-year ranged from 1 to 20. The total size of this search space is around 5.4 x 102

parameter combinations.

9.2. Experimental Setup

9.2.1. Search Method Variations

For each of the tasks above, five different search algorithms were applied: two genetic algo-
rithm variants, and three other metaheuristic search algorithms for comparison. These are
described

Random Search (RS). Random Search (RS) simply chooses a point in the search space
uniformly at random and evaluates its fitness, and determines whether it is better than any
previously examined point. At the end of the search, the best examined point is returned.
Random-Mutation Hill Climber (HC). The Random-Mutation Hill Climber (HC) starts
at a random point in the search space, consider it’s current location in the space. It gen-
erates a neighboring location by applying the mutation operator (mutation-rate = 0.05) to
the current location. It examines the fitness of the neighboring location, and if the fitness is
superior, that neighboring location becomes the current location, and the process repeats. In
addition, the HC has a mechanism to restart if it is “stalled”. Specifically, if the HC makes
1000 attempts to move to a neighboring point without succeeding, the current location of
the HC will jump to a new random location in the search space, and continue “climbing”
from there. At the end of the search, the best examined point is returned.

Simulated Annealing (SA). Simulated Annealing (SA) [Kirkpatrick, Gelatt, & Vecchi,
1983; Cerny, 1985] is a nature-inspired metaheuristic search algorithm based on physics

(rather than biology, like genetic algorithms). The analogy here is to the metallurgical
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annealing process, wherein a material is first heated, and then cooled in a controlled process
in order to form larger purer crystals. Higher temperatures permit more random motion
of the atoms through various (higher energy) states, and the slow cooling improves the
likelihood that the material will converge into a lower energy configuration. In SA, this
corresponds to initially allowing the search process to wander through poor fitness regions,
but over time decrease the probability of moving to poor fitness regions so that it will
eventually settle into a very good fitness region. Like the GA, the probabilistic nature of the
SA sometimes allows it to avoid becoming trapped in local optima of the fitness landscape.

The SA algorithm itself is strikingly similar to the HC algorithm presented above. The
SA starts at a current location, and it moves to (randomly generated) neighboring location
if that location is superior, or possibly even if that location is inferior (with some acceptance
probability based on how much worse the new location is and on the global “temperature” T').
The probability of accepting an inferior position decreases over time as the global tempera-
ture T is cooled according to an “annealing schedule”. Specifically, for these experiments the

(Afitness)/T —and we used a fairly standard exponential

acceptance probability for SA was e
decay annealing schedule for decreasing temperature (specifically, 7' = 0.99%, where ¢ is the
number of “moves” the SA has completed). In an ideal world, we would be able to vary the
search parameters (such as the cooling schedule and mutation rate) to find optimal settings
for the benchmark set, or for each model individually, but pragmatic constraints on time
and effort are preventative. However, this lack of parameter tuning is in a sense “fair” across
the search methods being compared - in all cases (including the GAs) search parameters

were configured (a priori) to what seemed reasonable defaults, either based on standard best

practices, previous literature, or intuition. A more detailed future investigation of this area
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is desirable, but the current experimental design already required significant computational
effort (see Section 9.2.4 below).

Generational Genetic Algorithm (GA-Gen). The generational genetic algorithm (GA-
Gen) is based loosely on the simple genetic algorithm as originally proposed by Holland
[J. Holland, 1975], though adapted for the more flexible chromosomal representation de-
scribed in Section 9.2.2 below. The general idea of the generational GA (starting with a
random population of individuals which evolves better solutions, generation by generation,
as a result of the combined forces of variation and selection) has already been described in
3.4.1. All that remains is to fill in the specific details used in the GA-Gen implementation
for this set of experiments.

Matching the HC and SA algorithms, the mutation-rate was set at 0.05. This 5% mutation
rate may seem high compared to the mutation rates commonly employed with binary genetic
algorithms (more commonly 1%, or inversely proportional to twice the length of the bit
string). However, those smaller values were per bit mutation rates, whereas the 0.05%
mutation rate described here is applied per-parameter, and there are only between 1 and
9 parameters being varied for these tasks, and numeric parameters are manipulated by
Gaussian mutation, which is more likely to cause a small change in value rather than a large
one. Thus, the amount of novelty introduced by a 5% mutation rate using this representation
may be comparable to lower mutation rates using a strictly binary genotype representation.
The GA’s crossover-rate was set to 0.70 (which is a common/standard choice).

GA-Gen uses tournament selection (with tournament size 2) to select individuals to
become parents for reproduction. In contrast to the original roulette selection which selects
individuals proportionally according to their numeric fitness values, tournament selection

examines two individuals from the population random and selects the more fit of the two.
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Thus, only relative fitness comparisons matter and absolute fitness values are unimportant;
this can save human effort that would be required to tailor and properly scale the fitness
function for use with roulette selection on a given problem.

Steady State Genetic Algorithm (GA-SS). It has been argued that a more incremental
population replacement strategy (as opposed to generational replacement) is beneficial for
genetic algorithms to converge more quickly on optimal solutions [Whitley & Kauth, 1988;
Whitley, 1989]. To test this claim in the context of ABM exploration, we also tried a GA
using a “steady state” population replacement strategy. Our steady state genetic algorithm
(GA-SS) is identical to the generational GA described in most respects. However, unlike the
generational GA, the steady state only replaces a single individual in the population at a
time. That is, it generates one new offspring (using the same parent selection, crossover, and
mutation mechanisms), and then replaces one individual in the population (not necessarily
the parent) with this new offspring. For these experiments, we always replace a member of
the existing population chosen uniformly at random. (An alternative variant of the steady-
state GA involves always replacing the individual with the worst fitness, which we did not
investigate here, but is also supported by the BehaviorSearch tool.)

Intuitively, this incremental replacement can speed up the maximal rate of evolution,
since a new good individual that enters the population may be consequently chosen to be a
parent more quickly than in the generational model, which requires that the whole population
is replaced in a batch operation. However, a counter argument can be made that using a
steady-state GA might result in premature population convergence and decreased genetic

diversity — thus the benefit in practice is not necessarily clear.
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9.2.2. Chromosomal representation

While some of the experiments in the case studies presented in earlier chapters used Gray bi-
nary encoding for the model parameters, all searches in the experiments presented here used
the “MixedType” chromosomal representation. This representation has the most straightfor-
ward mapping between genotype and phenotype — that is, each gene represents one parame-
ter (which may be integer-valued, real-valued, boolean, or categorical). Mutation is applied
(with a certain probability) to each gene individually, where Gaussian mutation is used for
numeric values, bit-flipping is used for boolean values, and random choice is for categorical
values. For the genetic algorithms, crossover only splits the chromosome in between genes
(no special real-valued crossover mechanisms are employed to do crossover on the intra-gene
level). (A comparative study of the relative efficacy of different chromosomal representations
is an important area for future work, but is beyond the scope of the current study, which is

already investigating the effects of changing multiple variables.)

9.2.3. Caching and Noisy Sampling Variations

For each of the five search algorithms described in Section 9.2.1 above, we tested 5 different
levels of sampling to reduce uncertainty in the fitness evaluations, and we tested all of these
combinations with and without fitness caching. This work dovetails on the more theoretical
work about sampling noisy fitness landscapes presented in Chapter 8. Here we are seeking

the empirical answer to the questions:

(1) when is fitness caching beneficial in the presence of noise?
(2) what level of sampling is most effective for efficient exploration of the fitness land-

scape?
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9.2.4. A note on computational effort

In total, the benchmark experiments for the models presented below cumulatively required
running roughly 300 million (3.0 x 10%) agent-based simulations and took more than 37000
CPU-hours!! It is only with the advent of high performance cluster computing that these
type of experiments have really become feasible. However, note that practitioners of this
exploratory approach need not necessarily expend this much computational effort in their
own ABM analysis work. For the purpose of benchmarking, 30 repeated searches with each
search configuration were required, in order to have reasonable statistical confidence for com-
paring the performance of different search configurations. Furthermore, 50 different search
configurations (caching vs. not, different noise sampling, 5 different search algorithms) were
tested for each model. While it may be advisable for practitioners to try a few repeated
searches (to reduce the danger of anomalous results) and use more than one search config-
uration (in case a specific search method yields particularly poor results for the problem),
they should not require anywhere near 1500 searches per exploratory task in order to dis-
cover interesting parameters or answer relevant analysis questions. Furthermore, much of
the power of the query-based exploration framework, is that once you have found a certain
behavior, you have proof of the existence of that behavior in the model’s parameter space.
You may not know for certain that the behavior can’t be achieved (or achieved more fully)
using different parameters, but you do know that it is at least possible. Thus, even running
just a single search (which can generally be run on any modern single/dual/quad-core lap-

top or desktop computer) has the potential to provide significant insight into your model’s

Hhis equates to a little over 4 CPU-years, meaning that if a single processor had been responsible for this
task, it would have spent nearly as long on this thesis as I have. Of course this effort was instead spread
across hundreds of processors for a much briefer amount of time. (If only I could have similarly parallelized
the human aspect of this thesis!)
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analysis, if the result is positive. On the other hand, if the search result is negative, then
many more searches would need to be attempted before deciding that the desired behavior
(probably) cannot be elicited from the model.

However, it is the coming ubiquity of massively multi-core machines combined with the
increasing prevalence of parallel computing clusters as well as elastic on-demand cloud com-
puting that holds the most promise for the QBME methodology to gain popularity and
become mainstream in the future. Currently these technologies are a few steps removed
from the scientific practice, but eventually tools will arise to integrate with (and tap into)
incredible computational resources. In the not-so-distant future I envision in a “begin par-
allel search” button appearing in toolkits like NetLogo that would seamlessly launch dozens
or hundreds of simultaneous genetic algorithms searches on a remote grid/cluster, reporting

back the most promising results to the user as they are discovered in real-time.

9.2.5. A note on measuring search performance

There are a number of ways to measure the performance of a search algorithm so we will
clarify our method here. Each search algorithm (GA, HC, RS, etc) evaluates fitness of
individual points in the search space as it progresses. As it runs, it keeps track of the best
individual (and associated best fitness) discovered so far, and if it finds a new individual
that’s better than the previous best, it records that as the “best” instead. This history of
best fitness values found, along with the number of evaluations (simulation model runs) that
were required before the fitness was found, forms a natural way to chart the progress of the
search.

However, because fitness evaluation is noisy, the fitness values reported by the search

process are biased towards better fitness than the points actually represent. Consider, for
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instance, a population of 100 individuals that each have a true average fitness of 10, but
that noisy fitness evaluations causes them each to report 10 + R, where R is a normally
distributed random number with mean 0 and standard-deviation of 1. It’s more likely than
not that the Genetic Algorithm will evaluate one of the individuals and find a fitness greater
than 12, even though the true fitness is only 10. For this reason, we employ a method
we call best-checking®?, which is extrinsic to the search algorithm, but very useful for accu-
rately assessing search performance. With best-checking, we take each new supposed “best”
individual reported by the search method, and re-evaluates the fitness for that individual
using an additional B model runs. This provides an unbiased estimate of the fitness of each
individual that the search process views as better than all previous. As we discussed in
Chapter 8, it is quite possible that the search process will choose a new individual which is
not better than the previous best, although it may appear so due to noise. The best-checking
procedure has the additional benefit that we may choose the number of unbiased sampling
runs (B) to be much larger than the regular amount of sampling for evaluating fitness, since
best-checking is only invoked each time the search algorithm finds a new “best” — which
occurs relatively infrequently, especially in the latter portion of the search process. For all
of the experiments presented here, we use B = 100 additional model runs to obtain an un-
biased estimate of the true fitness of each alleged “best” individual. Thus, the performance
versus number of model runs plots presented in this chapter are showing the average (across
30 searches) of the “checked” fitness values of the best individuals found by the time the
search has performed x model runs. (For all of these tasks we are measuring the “offline”
performance of the algorithm; measuring “online” performance does not make sense in this

context [K. A. De Jong, 1975].)

2This functionality is included in the BehaviorSearch software.
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9.3. Benchmark Results

The results are organized as follows. We will first provide a birds-eye-view of search
performance across all benchmark tasks, then we will delve deeper into the details of search
performance by examining the search dynamics for selected illustrative cases. Next we will
address the efficacy of fitness caching in the noisy environments created by ABM exploration
tasks, followed by a discussion of the impact of varying levels of noise reduction through

repeated sampling.

9.3.1. Performance summary

Choosing the criteria on which to measure search performance is not a simple matter. In
some cases researchers have used the “time taken to find the optimal solution”. However, this
criteria only makes sense if the optimal solution is known ahead of time, and if the search
task demands that the optimal solution be found. For the situation of ABM parameter
exploration, we can only find the optimal solution through exhaustive enumeration in very
small search spaces, and in general, we are interested in achieving good performance on the
search task, rather than demanding perfection. Thus, we are interested in how quickly the
search algorithm can achieve good performance (where “good” is relative to the performance
achieved by other search algorithms). This leaves us with two variables: search time (mea-
sured by the number of simulations the search has run) and search performance (measured
by the fitness of the best parameters the search has discovered so far). When evaluating
performance on a single problem, we can look at the full plot of search performance over
time. This can tell us, for instance, whether a certain algorithm does better early on, but is

eventually surpassed by a different algorithm (if the search is allowed to run long enough).
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However, in this benchmark test, we have 10 model exploration tasks, each with 5 different
levels of noise reduction sampling'®, and fitness caching turned on or off, and evaluating
the performance in this fine-grained fashion would require examining 100 dense performance
plots, each comparing the 5 search methods tested here. We will examine a few such plots in
the detailed discussion of each model task in sections 9.3.2.1 to 9.3.2.8 below, but this is in-
effective as a comprehensive overview. Thus, it is necessary to condense search performance
information, so that it can be summarized and more easily digested. One common approach
is to measure the search performance of each method at the end of the searches. This is
a logical performance measure since it reflects the best search results found by each search
algorithm, given the amount of time that it was allowed to run. This is the first measure we
use to quantify search algorithm performance. However, the search time cutoff (20K model
runs) was chosen somewhat arbitrarily — if a smaller limit had been set, a different search
algorithm might have been superior at that earlier point. This is particularly relevant for
problems where all the search methods reach a similar performance plateau, but some arrive
there more quickly than others (e.g., for a dramatic case in point, see the Segregation task
results discussed below in Section 9.3.2.2). In order to reward search algorithms for both
the quality of the solutions and the speed in arriving at them, we also looked at a measure
that averages the search performance across time. This is equivalent to the assumption that
a search practitioner might have chosen to stop the search (with equal probability) at any
point prior to our search cut-off of 20K model runs. This second measure is proportional to
the area under the curves in the average search performance versus time plots. Any form of

condensing/averaging data has its caveats, since some information is being lost. However,

BExcept for the FireVariance task, which used only 4 levels of sampling, since a sample size of 1 does not
permit the calculation of variance!
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these two measures provide reasonable proxies for search algorithms’ performance that is
useful for the type of ABM exploration tasks we are interested in.

The condensed benchmark results using the first measure (performance at the end of
the search) are shown in Table 9.2 (with fitness caching turned on) and Table 9.3 (without
fitness caching). Similarly, the condensed benchmark using the second measure (average
performance across search time) are shown in Tables 9.4 and 9.5. Even after this condensing
of temporal search information (and averaging performance across 30 repeated searches),
global trends in the benchmark performance can be somewhat difficult to detect. Since
the best performance in each row is shown in bold, scanning down the tables, one may
perceive that GA-Gen (the generational genetic algorithm) fairly often achieved the best
performance of the five methods, and the larger number of bold entries lower in the table
show that this was more true in the exploration tasks that had larger, more complicated,
and higher dimensional search spaces.

However, to appropriately summarize the benchmark results, another level of information
condensing is required. Because the performance/fitness values are incomparable across
different modeling tasks, we cannot simply average performance values — instead we use a
rank-order approach to aggregate data across tasks. Each row in these tables corresponds
to a specific task and an associated noise level sampling. For each row, we rank the five
search algorithms 1, 2, 3, 4, and 5, with 1 corresponding to the search algorithm that did
the best under those conditions, and 5 corresponding to the search algorithm that did the
worst. Then, for each search method, we can take the average of it’s rank value over all the
rows: e.g., a search algorithm that achieved rank 2 in half of the cases and rank 3 in the
other half would get an average rank of 2.5. These average rank results are given in Table

9.6. Using either performance measure, with and without fitness caching, GA-Gen yielded



Model/Task [ Sampling | RS | HC | SA | GA-Gen [ GA-SS |
FireDeriv 1 9.29 10.25 | 10.04 10.53 9.65
FireDeriv 4 13.41 12.86 | 13.92 13.17 13.59
FireDeriv 9 12.06 | 12.61 | 13.84 12.49 12.80
FireDeriv 16 13.53 | 11.80 | 13.80 14.37 12.68
FireDeriv 25 13.46 | 11.11 12.54 12.77 12.99
FireVariance 4 15.40 | 13.70 13.86 14.86 14.63
FireVariance 9 18.35 | 17.41 17.47 17.79 18.21
FireVariance 16 20.04 | 19.22 19.21 19.64 19.14
FireVariance 25 19.84 18.33 19.65 20.28 19.97
Segregation 1 99.00 | 99.59 | 99.68 99.52 99.28
Segregation 4 99.67 | 99.90 | 99.92 99.85 99.95
Segregation 9 99.92 | 99.90 | 99.94 99.94 99.97
Segregation 16 99.96 | 99.97 | 99.97 99.97 99.94
Segregation 25 99.96 | 99.97 | 99.97 99.94 99.93
Ants 1 22.55 | 20.77 | 22.12 22.72 21.89
Ants 4 24.38 | 24.61 | 25.10 24.73 24.35
Ants 9 25.18 25.52 24.32 25.85 25.37
Ants 16 25.74 | 22.70 | 25.91 25.97 25.41
Ants 25 25.69 | 23.00 | 21.53 26.12 26.07
Fireflies 1 0.733 | 0.724 | 0.721 0.734 0.714
Fireflies 4 0.768 | 0.775 | 0.763 0.761 0.735
Fireflies 9 0.779 | 0.783 | 0.785 0.779 0.764
Fireflies 16 0.782 | 0.783 | 0.789 0.758 0.771
Fireflies 25 0.791 | 0.788 | 0.781 0.787 0.766
Flocking 1 13.65 | 16.21 18.19 18.94 18.84
Flocking 4 1792 | 1797 | 19.45 19.65 19.66
Flocking 9 19.90 | 18.58 | 19.80 19.89 19.92
Flocking 16 19.75 | 19.33 | 20.01 19.84 19.97
Flocking 25 19.67 | 19.51 19.82 19.98 19.94
Daisyworld 1 5747 7304 | 13490 11852 10436
Daisyworld 4 19766 | 15521 | 16971 18679 15848
Daisyworld 9 21341 | 16801 | 16243 20311 18203
Daisyworld 16 20108 | 11889 | 14486 20304 18471
Daisyworld 25 20270 | 7918 11815 19945 17052
Ethnocentrism 1 0.335 | 0.337 | 0.321 0.407 0.384
Ethnocentrism 4 0.388 | 0.382 | 0.400 0.416 0.413
Ethnocentrism 9 0.390 | 0.402 | 0.416 0.418 0.415
Ethnocentrism 16 0.387 | 0.377 | 0.421 0.417 0.418
Ethnocentrism 25 0.386 | 0.398 | 0.407 0.417 0.414
Heatbugs 1 9.87 10.06 7.09 9.94 10.32
Heatbugs 4 9.41 10.29 7.97 8.09 9.74
Heatbugs 9 9.32 10.73 8.89 7.89 9.06
Heatbugs 16 10.06 | 11.47 9.86 8.59 9.18
Heatbugs 25 10.30 | 11.79 8.94 8.52 9.35
WolfSheep 1 0.890 | 0.934 1.14 0.977 0.807
WolfSheep 4 0.890 | 0.922 1.05 1.09 0.878
WolfSheep 9 0.835 | 0.816 1.04 0.974 0.970
WolfSheep 16 0.883 | 0.727 | 0.861 0.986 0.843
WolfSheep 25 0.871 | 0.698 | 0.773 0.942 0.840

Table 9.2. Benchmark search performance (at end of search — 20K model runs)
with fitness caching turned on. For each task and noise sampling level (row),
the best performance is shown in bold. Each data point is the average of 30

searches.
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Model/Task | Sampling [ RS | HC [ SA [ GA-Gen | GA-SS |

FireDeriv 1 8.04 9.02 7.77 11.55 13.61
FireDeriv 4 12.61 | 12.76 | 13.48 12.79 13.10
FireDeriv 9 12.61 | 13.29 | 13.84 13.50 13.44
FireDeriv 16 13.77 | 9.14 13.09 11.87 12.66
FireDeriv 25 12.75 9.21 | 13.66 12.69 13.10
FireVariance 4 15.09 | 14.66 | 16.31 16.83 19.00
FireVariance 9 18.59 | 16.74 | 19.07 19.65 19.57
FireVariance 16 20.25 | 17.40 | 19.13 20.32 19.68
FireVariance 25 20.12 | 16.77 | 19.85 20.04 19.41
Segregation 1 99.60 | 99.42 | 99.00 99.51 99.30
Segregation 4 99.73 | 99.83 | 99.93 99.88 99.87
Segregation 9 99.77 | 99.93 | 99.88 99.92 99.95
Segregation 16 99.93 | 99.94 | 99.97 99.96 99.95
Segregation 25 99.96 | 99.97 | 99.91 99.95 99.95
Ants 1 22.23 | 22.38 | 22.48 24.86 25.27
Ants 4 25.00 | 24.20 | 24.45 25.31 25.32
Ants 9 25.50 | 23.95 | 23.94 25.97 25.71
Ants 16 25.60 | 22.62 | 24.97 25.79 25.80
Ants 25 25.97 | 18.69 | 22.76 25.90 25.78
Fireflies 1 0.715 | 0.742 | 0.728 0.737 0.737
Fireflies 4 0.765 | 0.755 | 0.782 0.772 0.769
Fireflies 9 0.791 | 0.758 | 0.783 0.785 0.752
Fireflies 16 0.787 | 0.757 | 0.774 0.789 0.764
Fireflies 25 0.788 | 0.718 | 0.778 0.770 0.762
Flocking 1 13.31 | 15.81 | 16.97 19.17 19.00
Flocking 4 18.80 | 18.76 | 19.73 19.33 19.84
Flocking 9 19.75 | 19.86 | 19.75 19.82 19.76
Flocking 16 19.81 | 19.95 | 19.92 19.95 19.77
Flocking 25 19.79 | 18.78 | 19.32 19.96 19.91
Daisyworld 1 7894 8662 | 11020 12404 12612
Daisyworld 4 20490 | 13849 | 16585 18090 15149
Daisyworld 9 21329 | 14959 | 13537 17967 18311
Daisyworld 16 20705 | 12938 | 8150 17788 17727
Daisyworld 25 19914 | 11725 | 9069 18330 15957
Ethnocentrism 1 0.318 | 0.347 | 0.343 0.424 0.421
Ethnocentrism 4 0.395 | 0.377 | 0.397 0.424 0.420
Ethnocentrism 9 0.384 | 0.393 | 0.419 0.415 0.410
Ethnocentrism 16 0.390 | 0.371 | 0.421 0.415 0.392
Ethnocentrism 25 0.384 | 0.363 | 0.412 0.403 0.386
Heatbugs 1 10.35 | 10.49 | 7.11 5.34 6.05

Heatbugs 4 9.23 11.04 | 8.16 6.27 8.38

Heatbugs 9 9.25 11.77 9.27 7.43 9.18

Heatbugs 16 10.06 | 11.88 | 10.21 7.91 9.05

Heatbugs 25 9.72 12.60 | 9.18 9.75 10.28
WolfSheep 1 0.920 | 0.996 | 1.07 0.947 0.803
WolfSheep 4 0.898 | 0.845 | 1.04 0.973 0.877
WolfSheep 9 0.898 | 0.675 | 0.897 1.02 0.882
WolfSheep 16 0.913 | 0.614 | 0.840 0.964 0.791
WolfSheep 25 0.838 | 0.590 | 0.770 0.888 0.744

Table 9.3. Benchmark search performance (at end of search — 20K model runs)
with fitness caching turned off. For each task and noise sampling level (row),
the best performance is shown in bold. Each data point is the average of 30
searches.



Model/Task [ Sampling | RS | HC | SA | GA-Gen [ GA-SS |
FireDeriv 1 10.39 | 10.51 | 10.18 10.72 9.96
FireDeriv 4 13.12 | 11.97 | 13.74 12.61 13.36
FireDeriv 9 11.65 | 11.84 | 13.60 12.48 12.50
FireDeriv 16 12.61 | 10.03 | 13.06 13.11 12.24
FireDeriv 25 12.17 | 10.77 | 11.71 12.16 12.32
FireVariance 4 15.90 | 14.01 | 14.54 15.03 15.27
FireVariance 9 18.49 | 16.92 | 18.32 18.03 18.04
FireVariance 16 19.36 | 17.45 | 19.61 18.78 19.09
FireVariance 25 18.95 | 15.78 | 19.52 19.82 19.37
Segregation 1 99.00 | 99.58 | 99.68 99.52 99.28
Segregation 4 99.66 | 99.86 | 99.88 99.84 99.95
Segregation 9 99.90 | 99.78 | 99.87 99.90 99.94
Segregation 16 99.91 | 99.79 | 99.72 99.91 99.88
Segregation 25 99.88 | 99.78 | 99.62 99.87 99.84
Ants 1 2244 | 21.07 | 22.32 23.35 22.13
Ants 4 24.47 | 23.28 | 23.98 24.71 24.48
Ants 9 25.33 22.85 22.10 25.59 25.34
Ants 16 25.71 | 20.87 | 24.38 25.78 25.40
Ants 25 25.66 | 20.50 | 20.64 25.93 25.63
Fireflies 1 0.732 | 0.723 | 0.720 0.734 0.714
Fireflies 4 0.765 | 0.770 | 0.760 0.760 0.733
Fireflies 9 0.775 | 0.778 | 0.771 0.775 0.760
Fireflies 16 0.770 | 0.773 | 0.757 0.752 0.767
Fireflies 25 0.770 | 0.772 | 0.744 0.774 0.760
Flocking 1 13.15 | 15.98 | 18.45 18.92 18.77
Flocking 4 18.72 | 18.11 | 19.38 19.53 19.48
Flocking 9 19.34 | 18.38 | 19.14 19.60 19.64
Flocking 16 19.15 | 18.15 | 18.57 19.38 19.46
Flocking 25 18.74 | 17.89 | 18.42 19.13 19.15
Daisyworld 1 5974 7212 | 12066 11541 9188
Daisyworld 4 19212 | 11817 | 13857 17964 15747
Daisyworld 9 17566 | 13071 | 12520 18397 16233
Daisyworld 16 16323 | 9035 9980 17268 15770
Daisyworld 25 14076 | 6362 9036 15816 14218
Ethnocentrism 1 0.336 | 0.342 | 0.339 0.403 0.382
Ethnocentrism 4 0.382 | 0.371 | 0.385 0.409 0.406
Ethnocentrism 9 0.378 | 0.365 | 0.387 0.404 0.401
Ethnocentrism 16 0.373 | 0.332 | 0.365 0.395 0.399
Ethnocentrism 25 0.371 | 0.353 | 0.330 0.384 0.383
Heatbugs 1 10.18 | 10.96 | 8.98 10.10 10.53
Heatbugs 4 10.15 | 11.76 9.70 8.71 9.96
Heatbugs 9 10.06 | 12.43 | 10.67 8.93 9.86
Heatbugs 16 10.60 | 12.85 | 11.56 9.91 10.26
Heatbugs 25 10.88 | 12.88 | 10.94 10.07 10.36
WolfSheep 1 0.745 | 0.715 | 0.968 0.901 0.765
WolfSheep 4 0.754 | 0.711 | 0.814 1.00 0.779
WolfSheep 9 0.749 | 0.617 | 0.760 0.875 0.859
WolfSheep 16 0.734 | 0.567 | 0.653 0.850 0.762
WolfSheep 25 0.737 | 0.495 | 0.556 0.787 0.739

Table 9.4. Benchmark search performance (averaged across time) with fitness
caching turned on. For each task and noise sampling level (row), the best
performance is shown in bold. Each data point is the average of 30 searches.
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Model/Task [ Sampling | RS | HC | SA | GA-Gen [ GA-SS |

FireDeriv 1 9.44 8.60 8.57 11.57 12.54
FireDeriv 4 12.42 | 12.19 | 12.76 12.30 12.72
FireDeriv 9 12.33 9.28 | 13.26 12.52 12.27
FireDeriv 16 12.67 | 9.19 12.35 11.39 11.54
FireDeriv 25 11.93 9.22 | 12.46 11.97 11.38
FireVariance 4 16.07 | 15.24 | 15.98 17.00 18.13
FireVariance 9 18.44 | 17.58 | 18.28 18.96 18.98
FireVariance 16 19.44 | 15.12 | 18.49 19.30 19.20
FireVariance 25 19.74 | 16.61 | 19.29 19.50 18.55
Segregation 1 99.60 | 99.41 | 99.00 99.51 99.31
Segregation 4 99.72 | 99.75 | 99.85 99.87 99.86
Segregation 9 99.85 | 99.81 | 99.75 99.86 99.91
Segregation 16 99.88 | 99.61 | 99.72 99.88 99.88
Segregation 25 99.87 | 99.71 | 99.69 99.84 99.88
Ants 1 22.08 | 22.25 | 21.81 24.96 25.04
Ants 4 24.97 | 21.67 | 23.27 25.12 25.24
Ants 9 25.21 20.53 | 21.73 25.85 25.57
Ants 16 25.45 | 20.04 | 21.45 25.41 25.51
Ants 25 25.77 | 18.52 | 21.89 25.57 25.36
Fireflies 1 0.721 | 0.715 | 0.741 0.737 0.733
Fireflies 4 0.766 | 0.732 | 0.771 0.773 0.760
Fireflies 9 0.777 | 0.728 | 0.751 0.772 0.743
Fireflies 16 0.778 | 0.730 | 0.756 0.777 0.749
Fireflies 25 0.770 | 0.709 | 0.749 0.756 0.754
Flocking 1 13.17 | 15.88 | 17.24 19.13 18.96
Flocking 4 19.12 | 17.92 | 19.37 19.13 19.59
Flocking 9 19.45 | 18.24 | 19.21 19.22 19.40
Flocking 16 19.23 | 19.17 | 18.87 19.22 18.86
Flocking 25 19.01 | 17.50 | 17.66 18.96 18.91
Daisyworld 1 6688 7239 8448 11870 12136
Daisyworld 4 18689 | 10367 | 11151 17162 13922
Daisyworld 9 18421 | 9495 8384 14738 15511
Daisyworld 16 15672 | 10910 | 7390 14586 14317
Daisyworld 25 15495 | 9717 | 8046 14398 12642
Ethnocentrism 1 0.333 | 0.347 | 0.352 0.416 0.409
Ethnocentrism 4 0.385 | 0.348 | 0.386 0.406 0.403
Ethnocentrism 9 0.373 | 0.352 | 0.383 0.395 0.388
Ethnocentrism 16 0.376 | 0.351 | 0.366 0.385 0.375
Ethnocentrism 25 0.367 | 0.343 | 0.339 0.373 0.363
Heatbugs 1 10.74 | 11.74 | 9.20 7.66 8.68

Heatbugs 4 9.89 12.48 9.60 8.36 9.59

Heatbugs 9 10.05 | 12.80 | 10.61 9.00 10.32
Heatbugs 16 10.75 | 13.14 | 11.66 9.96 10.07
Heatbugs 25 10.69 | 13.03 | 10.88 10.71 11.00
WolfSheep 1 0.793 | 0.677 | 0.904 0.813 0.739
WolfSheep 4 0.777 | 0.640 | 0.827 0.865 0.761
WolfSheep 9 0.738 | 0.426 | 0.691 0.890 0.785
WolfSheep 16 0.800 | 0.429 | 0.658 0.782 0.702
WolfSheep 25 0.750 | 0.466 | 0.542 0.727 0.664

Table 9.5. Benchmark search performance (averaged across time) with fitness
caching turned off. For each task and noise sampling level (row), the best
performance is shown in bold. Each data point is the average of 30 searches.
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] Model/Task \ Sampling H RS \ HC \ SA \ GA-Gen \ GA-SS ‘
End-of-search performance Caching 32139 |27 2.0 3.2
End-of-search performance | No Caching || 3.2 | 4.2 | 3.0 2.0 2.7
Avg-over-time performance | Caching 3.0 43 ]33 1.8 2.6
Avg-over-time performance | No Caching || 2.4 | 4.7 | 3.5 1.9 2.6

Table 9.6. Average performance rank for each of the search methods. The
possible range of rank values is between 5.0 and 1.0, with lower scores being
superior. This table shows average ranks (1-best, 5-worst) for the search al-
gorithms across all exploration tasks and noise levels. The best average rank
values for each case are shown in bold.

the best performance in all cases. This confirms the trends that were mildly apparent in the
long-form benchmark results data (Tables 9.2 through 9.5). However, the GA-Gen average
rank is around 2, indicating that although it often was the best search algorithm (rank 1), for
many cases another search algorithm provided better performance. Again, this summarizes a
trend that is evident the long-form benchmark results. While it would have been nice to find
that one search method consistently dominated all others, the truth (as it often happens) is
more subtle and complicated. In fact, there are a few surprising features of these benchmark
results.

For example, the random search (RS) method generally outperformed the hill climbing
(HC) heuristic. And when looking at the average search performance over time (which also
considers early search performance), RS also has a better average rank than SA and GA-SS.
RS was chosen as a baseline unintelligent uniform sampling procedure - and yet it provides
better performance than more sophisticated search methods in many cases. How can this
be? There are a number of contributing factors. First, many of these tasks have a relatively
small search space, and the chances of randomly sampling a good solution are relatively high.
All of the other search methods (but especially HC and SA) have some notion of moving

incrementally through the search space. Thus, if they start by sampling a poor fitness region
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of the space, it takes some time for them to climb out of it into a better fitness region.
HC (and to some extent SA) specialize in fine-tuning a solution, and this thrust toward
“exploitation” over initial “exploration” can be costly for performance, especially early on
in the search process. Genetic algorithm’s population-based approach is less prone to this
problem, since the initial population contains a decently large random sampling. Second, for
many of these tasks noisy fitness is a significant issue — particularly when the noise sampling
level is small (1, 4, 9). When noise is significant, HC (and other search techniques) may
fail to pick up the appropriate search gradient, and not climb directly uphill. Instead, HC
may wander (aimlessly) in a small region of the space, tossed back and forth by noisy fitness
values. Of course, RS also experience noisy fitness evaluations, and this may mislead it
in its estimation of the value of each set of parameters that it tests, but at least it does
not become stranded in a small region of the space, where fitness may be low. In larger
search spaces (higher dimensional, more ABM parameters, etc), where good fitness values
are more sparse, and where fitness uncertainty does not overpower the search gradient, then
one would expect HC to outperform RS. It is also possible that the 20K model run cut-off
for the search was often too low for HC to excel on the tasks — if HC had been allowed
to run for a much longer time, it may have eventually surpassed random search, after its
fine-tuning capabilities became more beneficial. However, it is important to recall that many
ABM analysis tasks require more exploration, and less exploitation/optimization, and thus
RS may be a useful method, and should not be written off entirely. That said, GA-Gen,
which uses a balance of exploration and exploitation, outperformed RS in most cases.

A second surprising result was the GA-SS generally performed worse than GA-Gen on
these tasks. We explicitly included GA-SS as a search method, since previous work [Whitley

& Kauth, 1988; Whitley, 1989] had suggested that GA-SS might be superior in its ability to
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more quickly converge on good solutions. However, quick convergence can be a drawback as
well as a benefit. It is likely that the GA-SS population prematurely converged to moderately
good fitness values, possibly at local optima (either intrinsic to the fitness landscape or caused
by noisy fitness evaluations), leaving little diversity in the population. After convergence to
a near-identical population, further search progress would be slow, likely similar to the HC.
On the other hand, GA-Gen converges more slowly, allowing the search to explore several
branches in parallel, before one branch becomes dominant and the population converges. We
should keep in mind, though, that these results presented here are not definitive, and it would
be foolish of us to conclude that GA-Gen is superior to GA-SS for ABM exploration tasks.
A more tempered conclusion would be that for these search spaces, which are somewhat
conducive to random search, greater emphasis should be placed on exploration, and slower
convergence may be more beneficial for this task. Furthermore, there are a number of
methods for slowing GA population convergence, including increasing the mutation rate,
increasing the population size, or more explicit diversity maintenance mechanisms. Thus, it
could be that using different conditions than we used here, GA-SS might outperform GA-Gen
on these same benchmark tasks. However, until more in-depth investigations can be carried
out to assess the relative contributions of the differing GA population replacement models,
our benchmark results currently suggest that practitioners should choose a generational

approach.

9.3.2. Individual tasks and search dynamics

9.3.2.1. Fire (FireVariance and FireDeriv). While high dimensional search spaces
are difficult to visualize, for the Fire exploration tasks our search space is 1-dimensional,

so we will take the opportunity to examine it. A “ground truth” map of the search space
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Figure 9.8. Fitness landscape for the FireDeriv task.

was created by using an exhaustive search to run the simulation with each possible density
parameter value 100 times. This data was used to calculate the change in average percent-
burned (per one unit change in density) at each density value (the “true” fitness landscape
for the FireDeriv task, shown in Figure 9.8), and the standard deviation of the percent-
burned at each density (the “true” fitness landscape for the FireVariance task, shown in
Figure 9.9).

Note that despite taking 100 samples to reduce noise/uncertainty, the data is still some-
what noisy. The search algorithms were using smaller sampling values (1,4,9,16,25) than
100, meaning that their view of the search space was even more noisy than that displayed.

In the exhaustive search, the highest fitness value for the FireDeriv landscape was found at
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Figure 9.9. Fitness landscape for the FireVariance task.

density= 60.12.The highest fitness value for the FireVariance landscape was found at den-
sity= 60.01. Although these two density values are not identical, they are very close, and
they both serve to identify the Fire model’s phase transition. Although I have described the
plots shown in Figures 9.8 and 9.9 as “fitness landscapes”, the search space is also shaped
by the search operators that navigate the space. For this task which has only a single pa-
rameter, the genetic recombination operator is essentially inoperative, and the only search
operator that affects which points in the space are accessible from each other is the mutation
operator. As mentioned earlier, these searches all use Gaussian mutation for numeric model
parameters (such as density). Thus, a mutation can occasionally result in a large jump (i.e.

large change in density), but small incremental steps are far more likely.
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Apart from the noise, which may mislead or confound the search algorithms, both of
these search spaces are fairly straightforward. They each have a global optimum that has a
large basin of attraction leading up to it from either side. If you look carefully, you can also
find a very small local optima near density= 0 (more apparent in Figure 9.9) - however its
fitness is low and its basin of attraction is small, so searches are unlikely to be trapped by it.
This local optimum is explained by chance and small numbers — for very low density values
(e.g., 0.01 to 0.05), there may be only a few trees in the world, and if several of these trees
happen to be created adjacent to the left border of the world, where the forest fire starts,
then a large percentage of the forest can burn, simply because the “forest” consisted of only
a few trees — not because the forest fire spread a great distance through the world.

A closer examination of the FireDeriv search results shows that a few searches (34 out
of the 1500 searches performed for this task) were trapped by this inferior local optima.
Of these 34, 5 happened using RS with Sampling=1 (both with and without caching), and
the rest happened to HC with various sampling levels, although more often with higher
sampling levels. In the worst case, using HC with Sampling=25 and no fitness caching,
the search got trapped at the local optima 9 times out of the 30 searches, or 30% of the
time. RS mistakenly chose the wrong optima because with Sampling=1, it was possible for
a single lucky initial condition to achieve better fitness here (going between 0% burned at
density= 1.01 to 100% burned at density=0.01) than was achievable in the primary phase
transition area. The HC, on the other hand, climbed (or drifted) its way into this local
optima, and was unable to escape thereafter. For the FireVariance task, only 9 searches
ended up in the inferior local optimum, all of them being HC. That the local optima trapped
more in the FireDeriv case is a little surprising, since the height of this local optima seemed

more pronounced in the FireVariance landscape. However, the FireDeriv landscape has a
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broader flat plateau between density 0 and 40, whereas the global optimum’s basin extends
out farther in FireVariance, providing a fitness gradient that helps lead more hill climbers
that direction. Apart from these exceptions, all the searches eventually ended up on or
around the global optimum / phase transition.

9.3.2.2. Segregation. In retrospect, the Segregation task may have been too easy a task
for this benchmark collection. The performance curves over time (Figure 9.10) show the
search dynamics, and all search methods quickly reach the optimum (or very close to it).
Although the search methods were allowed 20K model runs, in all cases search performance
had plateaued by 2000 model runs, and often much earlier. By the end of the search, all search
methods have reached optimal levels of fitness (except for a few of the Sampling=1 cases
which are very close, though not quite as high). Nevertheless, some search methods (GA-Gen,
GA-SS, and RS) reach the best fitness values more quickly than the others. This was part
of the motivation for using average fitness over time to measure overall search performance,
rather than solely looking at end-of-search fitness, which would be uninformative in cases
like this.

The ease of finding optimal solutions is explained by examining the fitness landscape,
which is shown in Figure 9.11. A large portion of the space (67 < pct-similar-wanted < 75)
yields optimal (or near-optimal) fitness values. The horizontal banding here is not a sampling
artifact - the search space was sampled at high resolution in both dimensions. Rather, these
bands are representative of discontinuities in model behavior depending on the value of the
pct-similar-wanted parameter. The pct-similar-wanted parameter determines the threshold
that agents compare their fraction of similar neighboring agents to, when deciding whether

to move. Since each agent can only have up to 8 neighbors, agents can only ever observe
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Segregation (w/ fitness caching): Sampling = 25
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Figure 9.10. Search dynamics (performance over time) for each search algo-
rithm on the Segregation task, with Sampling=25 and fitness caching turned
on. (Error bars show 95% confidence intervals on the mean.)

fractions where the denominator is less than or equal to 8. Thus, changes to the pct-similar-
wanted parameter only affect model behavior when the change crosses a possible fraction
value. This creates large plateaus in the search space, which could potentially make it
difficult for search algorithms, because they provide little search gradient for moving toward
the high fitness region. However, the search space is fairly small, and the high fitness region is
itself a large plateau, which results in making this an easy task. The crucial parameter in this
fitness landscape is pct-similar-wanted, although in certain regimes (when pct-similar-wanted

is either large or small) the number of agents also affects the outcome.
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Figure 9.11. Fitness landscape for the Segregation task, calculated by exhaus-
tive search of the space using 100 repeated model runs for each combination
of parameters.

9.3.2.3. Ants. Although one reason for choosing the Ants task was to compare with Calvez
and Hutzler’s [2005] earlier experiment, a detailed comparison of search dynamics/performance

and turned out to be infeasible, for two reasons:

(1) The best-fitness performance curves they show in their paper are biased by noisy
sampling error, as they did not run independent trials to get an unbiased measure
of fitness (as described above in Section 9.2.5).

(2) We could not implement their specific genetic algorithm and re-run it to compare,

due to missing details in their paper necessary for replication of the experiment.

However, Calvez and Hutzler do report the results (parameter settings) discovered by their

search, and we can compare these with the results discovered by our search methods given
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Figure 9.12. Fitness (and noise) landscape for the Ants task. The best loca-
tions found by Calvez and Hutzler (C & H) [2005] and 30 GA-Gen searches
(with caching and Sampling=25) are compared to the global best (from an
exhaustive search). Substantial noise persists in the high fitness regions.

the same amount of computational effort (8120 model runs). These settings are diffusion-
rate= 88.6, evaporation-rate= 8.1, and 100 independent trials (model runs) with these settings
yield an average fitness value of 25.8 (with standard deviation of 7.6).

Unlike the previous two tasks, the exhaustive search of the Ants model was (necessarily)
performed at a lower resolution than the search algorithms being benchmarked: the two
parameters diffusion-rate and evaporation-rate were each varied from 0 to 99. The Ants
fitness landscape, and associated noise landscape, are shown in Figure 9.12. From this
exhaustive search, the best parameters found were diffusion-rate= 77, evaporation-rate= 8§,
yielding a fitness of 26.1 (with standard deviation 6.3) in 100 independent trials. Due to
the high stochasticity of fitness evaluation, and it is not clear that this value is superior

to that found by Calvez and Hutzler. In general, fitness values in this region are roughly
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comparable - a large number of model runs would be necessary to determine statistical
significance. Figure 9.12 also shows the best parameter settings found by 30 independent
GA-Gen searches (with Sampling=25 and fitness caching on), after each search has run the
model 8120 times. Although most of the searches have found good fitness regions, and some
are quite close to the purported global optima, a few of the searches are still in poor fitness
regions of the space. It is difficult to draw any conclusions, however, in comparison with
Calvez and Hutzler’s approach (an elitist GA with periodic temporal variation in sampling),
because they only provide the results of a single search. In general, the search space is quite
noisy, which can impede search, but there is a large region of high fitness, similar to the case
with the Segregation task.

9.3.2.4. Fireflies. Although the 4-dimensional search space of the Fireflies task is small
enough to enumerate, the higher dimensional nature of the space still makes it difficult
to visualize. Several 2-D slices of the fitness landscape are shown in Figure 9.13. A key
feature to note is that there is a nonlinear interaction between the number and flashes-to-
reset parameters of the model. This results in a local fitness peak where number= 50 and
flashes-to-reset= 2, from which a hill-climber could not climb directly to the more optimal
region when number= 10 and flashes-to-reset= 1.

The best combination of parameters found in the exhaustive search was number= 10,
flashes-to-reset= 1, cycle-length= 6, flash-length= 1, resulting in a fitness value of 0.80. These
best settings for synchronization using the “advance” agent strategy still fall far short of the
synchronization achievable when using the “delay” agent strategy, which can consistently
achieve a synchrony value of 1.0. However, as we can see in Figure 9.13, there are many
parameter settings that achieve much lower synchrony values than this (closer to 0.5). Only

a relatively small portion of the search space has high fitness values, and there appear to
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Figure 9.13. Selected slices of the fitness landscape for the Fireflies task, calcu-
lated by exhaustive search using 100 repeated model runs for each combination
of parameters.

be inferior local optima elsewhere in the space (see, e.g., the medium-fitness region in the
lower right panel of Figure 9.13), potentially making the fitness landscape more challenging
to successfully navigate. However, the search algorithms were largely successful in finding
high fitness values close to the global optimum; for example, 15 of the 30 GA-Gen searches
(with caching off, Sampling=16) found solutions with fitness greater than 0.79, and all 30
had fitness greater than 0.76.

9.3.2.5. Flocking. With the Flocking task, we now move beyond the range of exhaustive
search, and no longer have a full fitness landscape to compare with. Both genetic algorithms

(GA-Gen and GA-SS) did well on this task, outperforming the other search methods using
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Figure 9.14. Best-so-far performance for the Flocking task for GA-Gen with
caching (a) and RS without caching (b), demonstrating the potential for neg-
ative impact of insufficient noise reduction.

the end-of-search performance measure in all cases except for Sampling=16 with caching
(where it was bested by SA) and Sampling=9 without caching (where it was bested by HC).
However, the most notable trend in the search dynamics for this task was related to noise
reduction and sampling levels, and applied broadly to all search techniques. As shown in
Figure 9.14, there was a definite pattern that when sampling was too low (Sampling=1, and
to some extent Sampling=4), search performance was qualitatively worse than for higher
sampling levels. This trend was not merely a matter of being slower to achieve good fitness

values; when fitness evaluation was too noisy, the search performance plateaued or even
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declined, suggesting that it would never find good solutions. As a result, when choosing a
sampling level for noise reduction, it may be better to err on the side of too much sampling,
rather than too little. With too much sampling, the search may progress more slowly, but
practitioners will at least be able to see that the performance curves are still headed upward,
and that if they run the search longer they are likely to find better solutions. With too little
sampling, practitioners may be deceived into believing that the fitness plateau indicates
that the search has reached the best value that can be found. Section 9.3.4 contains further
discussion of sampling levels and noise reduction, examining trends more broadly across the
benchmark tasks.
9.3.2.6. Daisyworld. The goal of the DaisyWorld task was to uncover a bug in the model,
by finding a discontinuity in the search space. While fitness is measured on a continuum,
being the amount of change between adjacent points in the space, what we are ultimately
interested in is whether the searches arrived at parameter settings that would reveal the bug
or not. However, as it turned out, apart from the model bug there were other locations
in the search space where a small change in albedo-of-whites could result in a large change
in the average number of daisies. Thus, some of the searches achieved high fitness but did
not find the bug. Among the 300 GA-Gen searches, 219 reached fitness values greater than
15000, but only 88 of these were at a bug-noticing location. Among the search methods, the
RS algorithm had the highest average performance overall for this task, but similarly it only
found 83 bug-noticing locations, out of 237 searches that reached greater than 15000 fitness.
The fact that the goal (finding a bug) was not perfectly aligned with the fitness function
(looking for large model changes that might represent either phase transitions or disconti-
nuities) makes the results of this task difficult to interpret. However, in general, the task

of finding a discontinuity somewhere in the search space resembles a “needle-in-a-haystack”
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type of problem, and is unsurprising that more sophisticated measures (GA, HC, SA) do not
outperform RS. At least, for this particular bug, there is no fitness gradient that can help
lead searches to discover it — they essentially have to run across the hyperplane that the bug
affects by chance.

9.3.2.7. Ethnocentrism. For the Ethnocentrism task, the GA-Gen algorithm performed
very well, giving the best performance (using the average performance across time measure)
on 9 out of 10 cases (5 noise sampling levels, with and without caching). It was only surpassed
by GA-SS for the Sampling=16 without caching case. Under the end-of-search performance
measure, GA-Gen also did quite well, although SA outperformed it in a few cases. GA-
Gen (and GA-SS) performed substantially better than SA on the Sampling=1 case though,
suggesting that they are better able to handle noisy fitness functions. A plot showing the
effect of fitness caching on the search dynamics for the Ethnocentrism task appears later in
Figure 9.16.

9.3.2.8. Wolf Sheep Predation. While the average best fitness achieved by any search
method was only slightly greater than 1.0, some individual searches discovered parameters
that yielded fitness as high as 1.4. Recall that the fitness function is the sum of the corre-
lation for the wolves and the correlation for the sheep/moose. Thus, perfect correlation on
both counts would result in a maximum fitness value of 2.0. This indicates that the search
methods were moderately successful in finding parameters that could reliably generate good
correlation with the real-world population trajectories. Given that the model was designed to
be a simple abstract model of a predator-prey ecosystem, that there is considerable stochas-

ticity in the model behavior, and that the real-world data is quite rough, a correlation of
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around 0.7'* for both populations is pretty good. It is also possible that a more sophis-
ticated pattern-based matching measure (e.g., looking for periodic waveforms with similar
frequency in the real and simulated data) might be more lenient in their calibration measure,
and better highlight the similarities between the model and the Isle Royale ecosystem.

In terms of search performance, the GA-Gen algorithm had the best performance in more
than half of the cases, but the highest average fitness out of all the cases was achieved by
SA (shown in Figure 9.15). In this case the GA-Gen and GA-SS algorithms initially provide

better performance early in the search, but are eventually overtaken by SA.

9.3.3. Efficacy of fitness caching

In addition to comparing search algorithms against each other, another goal of this bench-
marking experiment was to empirically measure the benefit of fitness caching in the presence
of noisy fitness evaluations. Table 9.7 shows whether caching had a positive or negative
impact in each case, when measuring performance at the end of the search. Table 9.8 shows
the same information, but for the performance measure that takes the average search per-
formance over time.

Once again, these tables contain a large amount of information, which may be more easily

digested in the summary form shown in Table 9.9. There are several results worth noting.

(1) Caching has little, if any, consistent effect on RS. For about half of the tasks the
effect is positive, and in the other half it is negative. The negligible effect of caching

here is logical, since the likelihood of RS randomly sampling the same point in the

The actual breakdown for these parameter settings was 0.67 average correlation for the sheep/moose, and
0.74 average correlation for the wolves.
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Figure 9.15. Best-so-far performance for each of the different search algorithm

on the WolfSheep task with Sampling=10 and fitness caching turned on. Error

bars show 95% confidence on the mean. Note that despite running each search

30 times, the confidence intervals are still fairly wide, meaning that search

performance can vary substantially from one search to another.
search space twice is fairly low, and even if it does, it does not affect further choices
about where to search in the space.

(2) Caching usually has a beneficial effect on both HC and SA, except for the lowest

sampling levels (where the fitness landscape is noisiest), where caching is sometimes

helpful and sometimes harmful. The result that caching is more helpful to HC and

SA than to other methods likely stems from the fact that HC and SA operate more
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Search Algorithms
Sampling RS | HC | SA [GA-Gen| GA-SS| Total

1 sample 6/9 | 4/9 | 6/9 2/9 1/9 19/45
4 samples | 3/10 | 8/10 | 6/10 4/10 4/10 25/50
9 samples | 4/10 | 7/10 | 7/10 | 4/10 6/10 || 28/50
16 samples | 2/10 | 8/10 | 9/10 6/10 6/10 31/50
25 samples | 6/10 | 8/10 | 6/10 9/10 8/10 37/50

Total || 21/49 | 35/49 | 34/49 | 25/40 | 25/49 | 140/245

(a) End-of-search performance measure

Search Algorithms
Sampling RS \ HC \ SA \GA—Gen\GA—SS\ Total

1 sample 5/9 | 6/9 | 7/9 2/9 1/9 21/45
4 samples | 2/10 | 8/10 | 5/10 5/10 5/10 25/50
9 samples | 5/10 | 8/10 | 8/10 | 6/10 8/10 || 35/50
16 samples || 4/10 | 7/10 | 7/10 | 8/10 7/10 || 33/50
25 samples | 3/10 | 8/10 | 4/10 10/10 9/10 34/50

Total 19/49 | 37/49 | 31/49 31/49 30/49 || 148/245

(b) Avg. across time performance measure

Table 9.9. Summary of the effects of caching, by search algorithm and noise
sampling amount. Each cell shows the number of tasks where fitness caching
was beneficial out of the number of possible tasks. (For Sampling=1 the value
is out of 9 rather than 10 because the FireVariance task was only run for higher
sampling levels.)

locally than the other search methods. Thus are more likely to re-sample the same
points in the search space repeatedly, giving a larger potential benefit for caching
previously examined values.

(3) When fitness evaluation is noisy (low sampling levels), caching clearly has a harmful
effect on GA performance. However, equally striking is the pattern that when the
noise is reduced by sampling, fitness caching clearly improves GA performance. In
particular, at the highest level of sampling (25 repeated model runs per fitness

evaluation), fitness caching benefited GA-Gen in either 9 or 10 out of the 10 tasks
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(depending on the performance measure). The trend is present for both GA-Gen

and GA-SS.

The reason that the GA performance is more consistently impacted (both positive and
negatively) by fitness caching at low and high noise levels is not entirely clear. With high
noise, we hypothesize that the effects of frozen (cached) incorrect fitness values can be
more detrimental to population-based search methods than other methods, since individuals
with (falsely) apparent high-fitness may be difficult to weed out from the population, thus
keeping search resources tied up in unproductive regions of the space. Also, population-
based approaches have an implicit form of noise reduction by resampling those individuals
who remain in the population over several generations, but this mechanism is thwarted when
fitness caching is turned on.

Although most apparent for the GA search methods, there is a general pattern that
fitness caching is more beneficial at higher sampling levels (reduced noise). This is not too
surprising, considering that if fitness evaluation was completely deterministic (without noise),
then fitness caching could not result in any loss of performance, and could only improve the
situation. However, it is good to confirm this trend in the cases of intermediate noise, as our
benchmarks show. It is also interesting to observe the extent to which the combination of
high noise and fitness caching degrades GA performance.

To get more insight about how fitness caching affects search dynamics, we will zoom in to
look at the search behavior over time, for a specific task: Ethnocentrism. The performance
benefit due to fitness caching as the GA-SS search progresses is shown in Figure 9.16. In
this figure, note the successive “peaks” in the curves plotting the caching benefit: first
Sampling=1 peaks, then Sampling=4, Sampling=9, etc., followed by declines. As Figure

9.16 shows, fitness caching can provide a benefit to the search process early on in the search,
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Figure 9.16. Caching benefit search dynamics in the Ethnocentrism task, for
the GA-SS algorithm, with varying levels of sampling to reduce noise in the
fitness evaluation. Benefit is measured as the difference between the average
search performance (over 30 independent searches) with caching and without.

by allowing it to explore further more quickly (by avoiding recomputing previously tested
solutions). However, when noise is substantial enough (i.e. Sampling=1 or Sampling=4), it
eventually damages performance, possibly by preventing fine-tuning of solutions found by
the GA — something that is possible when fitness caching is turned off. Although the effects
of caching vary from one ABM exploration task to another, and sometimes results are quite

noisy, the Ethnocentrism task illustrates a trend in GA performance (both GA-Gen and
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GA-SS) that is also exhibited on several other tasks. For noisier fitness functions, caching
is more likely to be beneficial early on in the search process, and detrimental later in the
search. For less noisy fitness functions, it takes longer for the benefit of caching to be realized

by the search, but the detrimental effect is avoided.

9.3.4. Noise reduction through varying levels of repeated fitness sampling

Before discussing the effectiveness of various levels of noise reduction, we first examine the
amounts of noise present in the fitness landscapes. When search spaces are small enough,
such as with the Ants model (Figure 9.12), it is possible to get a complete picture of the
fitness noise throughout the whole search space. For larger spaces this is impossible, but
we can still obtain a fitness noise profile by sampling a number of points in the space and
measuring the variance (or standard deviation) of the behavioral measure at those locations.
For uniformity (and convenience), we will exclude from this section’s analysis those tasks
that themselves involve measuring variance ([FireVariance) those tasks that involve taking
a derivative with respect to some parameter (FireDeriv and DaisyWorld), and those tasks
that involve minimization rather than maximization (HeatBugs). For each of the remaining
tasks, we chose 1000 points uniformly at random in the search space, and measured noise
as the standard deviation of 10 replicate runs at those points. The distributions of noise
throughout the space for selected tasks are shown in Figure 9.17, and the average (mean)
noise level for each task is shown in Table 9.10.

For each task we also obtained an approximate e-distribution (distribution of fitness
differences between neighboring points in the search space, as defined previously in Chapter

8), and these are shown in Figure 9.18.
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Figure 9.17. Distribution of noise in the search spaces for six of the ABM
exploration tasks, as estimated from 1000 randomly sampled points in the
search space, with 10 replicate runs at each point.

| Model/Task | Noise (stdev) |

Ants 4.01
Ethnocentrism 0.0191
Fireflies 0.0365
Flocking 0.539
Segregation 1.28
WolfSheep 0.192

Table 9.10. Average noise level for each task. Noise level is measured as the
standard deviation of repeated behavioral measurements when running the
model multiple times with the same parameter settings.

To further investigate the effects of noise reduction by repeated sampling in the presence

of fitness caching, we use the probability of a false switch (P(false switch)) that we derived
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Figure 9.18. Distribution of differences between neighboring points in the
search space (e-distribution), for six of the ABM exploration tasks, as esti-
mated from 1000 randomly sampled points in the search space, with 10 repli-
cate model runs at each point and its neighbor (obtained by the mutation

operator).

in Chapter 8'°. Specifically, we calculate P(false switch) by a numerical approximation
of Equation 8.3, using the e-distribution and mean noise value sampled from each task’s
fitness landscape. The resulting false switch probabilities for each task at each sampling
level are shown in Figure 9.19. Notice the decreasing returns, in terms of the reduction of
the likelihood of false switches occurring as you increase the amount of sampling to reduce

noise.

15We do not use the false optima measure that was also derived in Chapter 8, because the benchmark search
methods used Gaussian mutation, which does not permit calculation of the number of neighbors that each
point has in the search space; rather, there is a probability distribution over possible neighbors.
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Figure 9.19. The probability of a false switch due to noise in the fitness eval-
uation, for each benchmark task and noise reduction sampling level.

We are further interested in the relationship between P(false switch) and the perfor-
mance of the various search methods. A plot of performance versus P(false switch) for each
task is shown in Figure 9.20. All other things being equal, a lower P(false switch) is always
better — but in this case, the lower P(false switch) is only achieved by additional sampling.
Because we fixed the total number of evaluations allowed for each search in these bench-
marks, additional sampling means that the search will sample fewer points. Thus we find
that in many cases, a medium level of P( false switch) value often corresponds to the highest
performance on a certain task. Unfortunately, different values of P(false switch) achieve
optimal performance on different models, which limits the usefulness of the P(false switch)
measure for predicting the optimal amount of sampling for noise reduction. This observation
for these practical ABM benchmark tasks, along with the difficulties in predicting sampling

levels for each of the artificial fitness landscapes in Chapter 8, suggest that the e-distribution
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for a given landscape is insufficient for precisely predicting the impact of noise on that land-
scape. Additional information about the fitness landscape, or the spatial distribution of
noise within that landscape, appears to be needed in order to characterize the noise impact
with reasonable precision. However, the best performance in these benchmark tasks for the
genetic algorithms (GA-Gen and GA-SS) was always achieved for P(false switch) values
between 0.25 and 0.6. Thus, this information could serve as a rough (but useful) guideline
for an upper bound on what P(false switch) should be for effective genetic search; i.e.,
practitioners may wish to choose a sampling level sufficient to reduce the likelihood of a false
switch occurring to below 60%. While a more precise value to predict optimal performance
would be preferable, a guideline like this holds promise to help users avoid particularly bad
search performance. Optimal noise reduction and sampling techniques for heuristic search
are an active area of research, and much work remains to be done to improve methodology

for choosing appropriate noise levels for efficient search.

9.3.5. Benchmark summary conclusions

Unfortunately for practitioners, the relationship between the performance of search algo-
rithms and the noisy complex fitness landscapes created by ABM exploration tasks is neither
simple nor straightforward. Complex interactions are involved, and different algorithms may
be optimal for different fitness landscapes with certain features and search space dimensions.
Despite this, there is some good news. In this chapter we have shown that genetic algo-
rithms (specifically the generational GA) can perform well on a variety of search tasks with
varying levels of noise. Although genetic algorithms may not be the optimal search method
for some specific models and noise levels, in our benchmark tests it consistently provided

good performance. Furthermore, the performance of the genetic algorithm appeared to be
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Figure 9.20. The probability of a false switch due to noise in the fitness evalu-
ation, for each benchmark task and noise reduction sampling level (with fitness

caching turned on).

improving, relative to the other search algorithms we examined, as the search spaces became

larger and higher dimensional. This pattern is particularly encouraging, since many research-

caliber ABMs have large numbers of parameters that need to be explored and analyzed. The

benchmarks also demonstrated that the practice of fitness caching, even in the presence of

noisy fitness evaluation, can be valuable for improving search performance, although not

in the noisiest landscapes, unless sufficient noise reduction is performed. These benchmark

tests, in conjunction with the ABM case studies presented in Chapters 4 through 7, show

that genetic algorithms can rise to this challenge and provide an effective mechanism for
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ABM exploration and analysis. As stated in the introduction to this chapter, although these
benchmark experiments are far more comprehensive than any previous effort to characterize
the performance of genetic algorithms (or other meta-heuristic search algorithms) in this do-
main, the results are not intended to be the final word on this subject. Instead, this chapter
lays down the necessary groundwork for this type of research, and provides an open invita-
tion for other researchers to follow in experimentation with alternative algorithms, methods,
techniques and parameterizations, so that together we can provide practical guidance to the

emerging area of QBME-style ABM analysis.
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CHAPTER 10

BehaviorSearch: A New Tool for Metaheuristic ABM Parameter

Search

“At each increase of knowledge, as well as on the contrivance of
every new tool, human labour becomes abridged.”

— CHARLES BABBAGE

“With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.”

— JOHN VON NEUMANN

The practice of designing and building new tools is crucial to computer science, and has
been so since the early days of Charles Babbage’s difference engine. Something which has
changed is that most tools are now built in software, rather than at the hardware level.
Compilers are an example of a software tool that fundamentally changed the landscape of
computer science. However, many other tools have had substantial impact on the discipline,
and society at large. The Google search engine is an excellent case in point. The theoretical
ideas behind PageRank algorithm developed by Sergey and Brin [1998] were not entirely
novel; in fact, similar graph-based ranking algorithms go back much further to ideas in in-
formation retrieval, bibliometrics, sociometry, and econometrics [Franceschet, 2011]. If Page
and Brin had merely talked about the ideas of PageRank without acting on them to build

a practical search engine (Google), the impact might have been limited to a few academic
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journal papers and theoretical arguments. Instead, this tool revolutionized how people ac-
cess and discover relevant content on the World Wide Web (incidentally, it also gave birth
to a multi-billion-dollar company). There are, naturally, many other examples of the suc-
cess of tool building, including the NetLogo [Wilensky, 1999] platform that BehaviorSearch
interfaces with. Agent-based modeling lies at the intersection of computer science and many
other disciplines, and as it is a growing field, there are many opportunities for building useful
tools to serve this community. I am a strong proponent of the creation of tools to support
new and innovative work in this domain, particularly in the analysis of ABM behavior, which
is a challenging area with many Al applications.

With new tools comes new power, and with this power also comes responsibility. As is
the case with many tools, BehaviorSearch [Stonedahl & Wilensky, 2010a] is one that may
be alternatively used or abused, and thus I feel compelled to issue a warning, relating to
von Neumann’s glib remark about his ability to “fit an elephant”. While von Neumann was
referring to mathematical/statistical modeling methods, his broader point also applies to
agent-based models. By giving your model enough parameters, your model can express a
wide range of behavior. So if you want to show the world a model that displays elephant-
trunk-wiggling behavior, BehaviorSearch can help you find parameter settings that will do
that. Does the discovery of such parameters mean you have developed a good model? Not
necessarily. It only means that the behavior you sought exists somewhere in the parameter
space. Other questions must be considered: are the parameter assignments that caused
this behavior reasonable? what effect does each parameter have on the outcome, and are
those trends reasonable? One could use BehaviorSearch merely to calibrate/tune model
parameters to highlight positive aspects of the model. However, it is the responsibility of

the model author to carry out a critical analysis of the model — perhaps even to serve as
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one of the model’s severest critics. Fortunately, BehaviorSearch can assist with this process
as well, to perform multi-variate sensitivity analysis (as with the Artificial Anasazi model
described in Chapter 6), and to search for anomalous behavior that could be indicative of
model errors.

In this chapter, we will discuss the design and implementation of BehaviorSearch, which
is an open-source cross-platform tool that offers several search algorithms and search-space
representations/encodings, and can be used to explore the parameter space of any ABM
written in the NetLogo language. It was implemented in Java, and interfaces with the
NetLogo modeling environment, using NetLogo’s Controlling API. The user specifies the
model file, the desired parameters and ranges to explore, the search objective function, the
search method to be used, and the search space encoding, and then BehaviorSearch runs
the search and returns the best results discovered (and optionally the data collected from all
of the simulations run along the way). A beta-release of BehaviorSearch is freely available
for download!. Our intent is to make advanced parameter search techniques accessible to
a wide range of modelers so that the methods and ideas discussed in this thesis can be
put into practice by others. We will begin by addressing the design goals, followed by a
description of the software’s current feature set (and how it supports those design goals).
Finally, we discuss architectural and implementation details, including the ability to extend
BehaviorSearch with new adaptive search algorithms and search space representations. This
chapter will provide an overview of this software, but not detailed instructions for how to
use it. For the latter, the reader is referred to the tutorial/documentation included with the

software.

I Available at: http://www.behaviorsearch.org/
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10.1. Design and Features of BehaviorSearch

10.1.1. Design Goals

BehaviorSearch follows in the tradition of NetLogo [Wilensky, 1999, 2001; Tisue & Wilensky,
2004], and Logo [Papert, 1980] before it, in embracing the twin design goals of “low threshold”
and “high ceiling”. By this we mean that the BehaviorSearch tool should be both easy for
beginners to learn and use (“low threshold”), while also providing advanced features that
will allow expert modelers to engage in cutting-edge research and analysis (“high ceiling”).
To be clear, the “low threshold” goal for NetLogo, which aims to support use by elementary
school students, is lower than that of BehaviorSearch, which primarily targets NetLogo’s
research audience. However, increasingly NetLogo is being used by undergraduates or even
high school or middle school students who are developing agent-based models for research
projects, and we would like BehaviorSearch to be accessible to these audiences, as well as
researchers from various disciplines who are non-expert programmers but have adopted ABM
methodologies for their research. Just as NetLogo strives to make the creation of agent-based
models accessible to children and novices, BehaviorSearch aims to facilitate model analysis
by making search and optimization techniques accessible to all modelers. The features that
support these design goals are detailed in Sections 10.1.3 and 10.1.4 below. In conjunction
with these design goals, BehaviorSearch is also designed to be extensible and open. This
extensibility means that it should be possible to add new search algorithms and features in
a simple modular way. Furthermore, the BehaviorSearch source code should be open and

available to all, which provides several benefits that are discussed further in Section 10.2.
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10.1.2. General features

Parameter-type flexibility. BehaviorSearch is capable of searching a combination of nu-
merical (discrete/continuous), boolean, and categorical parameters. This is an important
feature, since ABM parameters often take various forms, and are not constrained to always
be of uniform type.

Search method variety. BehaviorSearch offers several different search algorithms and
search space representations that users can employ. While the primary focus of my research
has been on genetic algorithms, we have designed it as a general tool for applying any type
of metaheuristic search algorithm to explore ABM parameter spaces. At present, Behav-
torSearch supports the following search algorithms: random search, stochastic hill climbing,
simulated annealing, and two variants of the genetic algorithm (generational GA and steady-
state GA). We plan to add additional algorithms in the future. This flexibility is important
since different approaches can be more or less effective for exploring different models.
QBME framework support. BehaviorSearch supports the QBME framework (described
in Chapter 3) by providing options for different ways to condense data at different levels of
ABM analysis: e.g., one can take the median value across model time steps, but then look at
the standard deviation of results across multiple replicate runs with different random seeds.
Best-checking. As discussed in earlier in Section 9.2.5, BehaviorSearch provides built-in
support of best-checking, to prevent users of the software from being misled by high fitness
values resulting from ABM stochasticity (and so that users can easily detect if the search

algorithm is being misled).
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Figure 10.1. Windows graphical installer for BehaviorSearch.

10.1.3. “Low threshold” features

Graphical installer for Windows™. In an effort to make the software easy to use, the
first step is making it easy to install. Since BehaviorSearch requires NetLogo to perform
model runs, it needs to reside in a subfolder of the NetLogo installation folder. This can be
a challenge, particularly on variants of the Windows operating system, where users may have
difficulty finding the NetLogo installation folder, and may not have write-access privileges
to modify its contents. As a result, we provide a graphical executable installer for Windows
(see Figure 10.1) to simplify this installation process. (Installation on Mac/Linux computers
is also reasonably straightforward, and generally just requires dropping a folder into the
NetLogo application directory.)

Graphical User Interface. BehaviorSearch’s GUI provides an easy way to both design

and run parameter searches. The dialog for designing experiments is shown in Figure 10.2,
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Figure 10.2. BehaviorSearch GUI for designing experiments involving model
search, exploration, and optimization. This screenshot shows a search protocol
for one of the FireDeriv exploration tasks discussed in Chapter 9.

and the dialog for launching parameter searches is shown in Figure 10.3. The GUI also
provides error-checking and widget constraints to prevent users from creating malformed
search queries.

Real-time feedback. BehaviorSearch provides integrated real-time search progress feed-

back. If searches are run from the BehaviorSearch GUI, then this information is displayed
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Figure 10.3. BehaviorSearch GUI dialog for launching search experiments.

via a progress bar and an auto-updating plot of fitness versus time (see Figure 10.4). Cou-
pled with best-checking, this feedback permits the user to gauge search progress as it goes,
as well as to get the latest information about the best model parameters found so far.
Natural learning progression. BehaviorSearch builds off of the success of NetLogo’s
built-in BehaviorSpace tool [Wilensky & Shargel, 2002], which provided a low-threshold way
to perform grid/factorial parameter sweep experiments. Because the search space specifica-
tion and model data collection were designed to be similar, users of NetLogo’s BehaviorSpace
tool should be able to get started quickly with BehaviorSearch. This design provides a nat-
ural learning progression: NetLogo (for building the model) = BehaviorSpace (for simple
model analysis) = BehaviorSearch (for more advanced analysis and exploration).
Tutorial. BehaviorSearch ships with an included tutorial, which provides walk-through
directions for using the tool to accomplish an example exploration task, as well as extensive
coverage of the software’s many features. All too often, academic software is thrust upon
the world with insufficient information for users to even get started with it, let alone master

its use. The great success and popularity of the NetLogo modeling toolkit is partially a
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Figure 10.4. BehaviorSearch GUI dialog displaying search progress: this in-
cludes the fitness levels achieved as the search progresses, the best parameter
settings found by the search so far, the percentage of the search that is com-
pleted, and an estimate of the amount of time remaining.

result of the thorough documentation and excellent tutorials that accompany it. We seek to
replicate this success in BehaviorSearch, by ensuring that users have sufficient documentation
to effectively learn how to use the software.

Integrated help and examples. Beyond the tutorial (which is available both on the Be-
haviorSearch website, and from the Help menu), the BehaviorSearch GUI provides integrated
help/documentation via tooltips and localized help buttons which are only a click away. The
non-GUI version of BehaviorSearch also provides help that documents each of the command

line arguments/options for running. The software package also includes several example
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search experiment protocols, demonstrating how one might use BehaviorSearch to explore

some of the models that come in NetLogo’s models library.

Project Website. The BehaviorSearch tools is also supported by the accompanying project

website (see Figure 10.5), located at http://www.behaviorsearch.org/. This website pro-

vides additional resources, such as a summary of features, information about new releases,

links to relevant papers, and a contact form for user feedback. This site also links to a Google

Code open source project website, with an issue/bug tracker, and access to the source code.
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10.1.4. “High ceiling” features

Multi-resolution data output. BehaviorSearch can collect and store data at various levels
of detail: recording each model run performed, each fitness evaluation, each time a new “best”
is found, as well as the final best parameter settings at the end of each search. While novices
can effectively use BehaviorSearch by simply looking at the final best parameters found,
more advanced users can dig deeper into the search process and the results and parameters
examined along the way.

Parametric derivatives. Built-in support for approximating derivatives of a behavioral
objective function with respect to a specified parameter. As discussed in Chapter 3, this is
useful for detecting phase transitions and critical points in the parameter space.
Parallelization and multi-threading support. BehaviorSearch was designed from the
ground up with multi-threaded support? for parallel searching, offering improved performance
for multi-processor/multi-core computers. As the number of cores in desktop computers
proliferates, harnessing this parallelism becomes a crucial performance issue.
Command-line operation. BehaviorSearch includes a command-line version (see Figure
10.6) that is separate from the GUI version. This facilitates scheduling batch search opera-
tions, and more importantly, it allows one to run BehaviorSearch on remote clusters that do
not have GUI support. There has been a substantial increase in recent years in both high
performance computing clusters and cloud computing. By providing a command line version
of BehaviorSearch, it is possible for users to spawn any number of independent searches and

run them in parallel.

’Implementation note: this takes advantage of the improved concurrency features of Java 5/6, such as
java.util.concurrent.ExecutorService and javax.swing.SwingWorker.
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is run without arguments, it displays all of the command line options/usage

information, as shown above.

When BehaviorSearch
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Extensibility. BehaviorSearch was developed using an extensible object-oriented frame-

work, allowing new search algorithms and search space representations to be easily added,

as will be discussed further in Section 10.2.

10.2. Architecture and Implementation

10.2.1. Open Source Status

BehaviorSearch has been released under an open-source license (specifically, the BSD 3-clause

license®), which provides several important benefits.

3See: http://www.behaviorsearch.org/LICENSE. TXT
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(1) This openness of source code provides transparency in academic research, so that re-
searchers can fully examine the specific algorithms that are being employed to search
the parameter spaces of their models. Failure to provide this level of transparency
could compromise the legitimacy of this tool for serious research.

(2) This openness allows advanced users to customize the software to their own needs
if necessary. The open source status guarantees complete extensibility.

(3) This openness further encourages community-contributed improvements to the soft-
ware; users who are also programmers may submit bugfixes, add new features, and
generally contribute to further enhancements of this project. The open source sta-
tus is an invitation to become a member of a team effort in producing a tool that
is useful to the community.

(4) This openness also promotes an open exchange of ideas, and may allow other ABM
methodology researchers to design new tools to support query-based model explo-
ration and analysis. Our goal here is to promote this research area (and practice
in the field), not merely to promote our own specific tool for accomplishing it. The
source code may assist others in developing alternative or derivative software that

will push the field forward.

Because BehaviorSearch is open source software, the entire codebase is available for users
to review, adapt, and extend, in case there are additional features which they require for
their work. This provides the final rung in the ladder toward a “high ceiling”; expert users

may dive under the hood to modify BehaviorSearch to meet their own needs if necessary.
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Figure 10.7. Design schematic of the BehaviorSearch architecture.

10.2.2. Modular Architecture

However, providing software with an open source license is no substitute for solid software
design and clean architecture. Making public a messy spiderweb of code does little to promote
extensibility or encourage community contributions. Thus, a modular design is crucial so
that changes can be made to one part of the code without affecting others. Figure 10.7 shows
a schematic of the overall architectural design, and also how BehaviorSearch interfaces with
NetLogo. In particular, note that the BehaviorSearch engine is separated from the GUI
layer, and does not depend on it.

At a finer level of detail, the BehaviorSearch codebase (written in Java) is divided into

eight packages for organizational purposes:

e bsearch.algorithms - contains all of the search algorithms
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e bsearch.app - contains the main code driving the BehaviorSearch application

e bsearch.evaluation - contains code for handling fitness evaluation and fitness
caching

e bsearch.nlogolink - handles all of the communication with the NetLogo platform

e bsearch.representations - contains all of the search space representations

e bsearch.space - contains a representation of the parameter space

e bsearch.test - a package that contains unit testing

e bsearch.util - a package containing miscellaneous utility functions

As shown in Figure 10.7, BehaviorSearch also contains an extensions API. This API
provides a clean interface for extending its capabilities via new search algorithms and search
space representations, which will help support both continued research and any special needs
of end users of the tool. To add a new search algorithm or search space, it is possible to simply
write a new subclass of the AbstractSearchMethod class, drop it into the bsearch.algorithms
package, and add one line to a text file that lists the search methods available to Behav-
torSearch. The scenario for adding a new search space representation is similar. These
plugin-style mechanisms are supported by the Java Reflection API. In general, the modular
design of BehaviorSearch permits the addition of new functionality without editing any of
the codebase, apart from the new Java class being added.

Search experiment protocols designed in BehaviorSearch are stored as XML documents
(see Figure 10.8). Since XML is an industry-wide standard for data exchange, this provides
compatibility for other tools to easily generate or manipulate search protocol files. The
specific XML document format is formally specified by a DTD (Document Type Definition)

which is included with the software package. The XML search protocol files also track
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<?xml version="1.0" encoding="us-ascii"?>

<IDOCTYPE search SYSTEM "behaviorsearch.dtd">

<search>

<bsearchVersionNumber>0.73</bsearchVersionNumber>

<modelInfo>

<modelFile>Fire-bench.nlogo</modelFile>
<modelSetupCommands>setup</modelSetupCommands>
<modelStepCommands>go</modelStepCommands>
<modelStopCondition>not any? turtles</modelStopCondition>
<modelStepLimit>10000</modelStepLimit>
<modelMetricReporter>percent-burned</modelMetricReporter>
<modelMeasurelf>true</modelMeasurelf>

</modelInfo>

<fitnessInfo>

<fitnessMinimized>false</fitnessMinimized>
<fitnessCollecting>AT FINAL STEP</fitnessCollecting>
<fitnessSamplingReplications>9</fitnessSamplingReplications>
<fitnessCombineReplications>MEAN</fitnessCombineReplications>
<fitnessDerivative parameter="density" delta="1.0" useabs="true"/>
</fitnessInfo>

<searchSpace>

<paramSpec>["density" [1 0.01 99]]</paramSpec>

</searchSpace>

<searchMethod type="MutationHillClimber">
<searchMethodParameter name="mutation-rate" value="0.05"/>
<searchMethodParameter name="restart-after-stall-count" value="1000"/>
</searchMethod>

<chromosomeRepresentation type="MixedTypeChromosome" />
<caching>true</caching>
<evaluationLimit>20000</evaluationLimit>
<bestCheckingNumReplications>108</bestCheckingNumReplications>
</search>

Figure 10.8. Example search protocol (in XML format) for one of the FireDeriv
task experiments.

versioning, so that newer versions of BehaviorSearch that add new features to the protocol

can seamlessly update search protocols created with prior versions.

10.3. Conclusion

Prior to the release of BehaviorSearch, QBME-style model analysis was only accessi-
ble to programmers who could either connect ABM toolkits to genetic algorithm (or other
metaheuristic search) libraries, or write their own code from scratch. We have provided an
easy-to-use tool with a graphical user interface that is integrated with a widespread and

easy-to-use ABM platform (NetLogo), which constitutes considerable progress toward “low
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threshold” ABM exploration. This tool also contains a variety of advanced features that
we believe will be useful for serious ABM researchers, supporting a “high ceiling” so that
this audience is not constrained. Furthermore, BehaviorSearch has been designed to be
both open and extensible, to support customization and further development. In all these
respects, BehaviorSearch provides a significant contribution to the practice of agent-based
modeling. I believe this contribution is much needed, given the current state of the field: all
too frequently ABMs are published and conclusions are drawn regarding these models, de-
spite inadequate exploration of the model’s parameter space, and insufficient model testing.
We believe that a tool that is efficient, effective, and easy-to-use will lower the barriers to
performing comprehensive ABM analysis and, given sufficient levels of adoption, will raise
the community’s standards for exploration of model behavior. Through informal conver-
sations with researchers and modelers at conferences, workshops, and symposiums, I have
confirmed that there is considerable interest in BehaviorSearch. It has also been discussed
and recommended in ABM/complex systems workshops at the AAAI Fall Symposium in
Arlington, Virginia and an NEH summer seminar on computational modeling in the hu-
manities in Charlotte, N.C. Additionally, since the initial beta release, this software tool
has been downloaded over 500 times. While this represents but a minute fraction of NetL-
0go’s userbase (which numbers in the hundreds of thousands, comprised of both researchers
and educational users), it still demonstrates significant interest in a small segment of early-
adopters in the ABM researcher community. We anticipate a significant increase in adoption

following the release of BehaviorSearch 1.0.
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CHAPTER 11

Conclusions

“I've always been more interested in the future than in the past.”
— GRACE HOPPER

“Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.”

— WINSTON CHURCHILL

I share Grace Hopper’s interest in the future, and have little desire to belabor the past.
Accordingly, I will devote little time to the reiteration of points that were already made in
the preceding ten chapters. Instead, I will merely provide a concise summary of the major
contributions of this thesis, followed by a discussion of the broader impact of this work and
applications to other research areas. The chapter concludes with a discussion of promising

avenues for future work.

11.1. Contributions and Broader Impact

11.1.1. Contribution Summary

(1) We have provided the first comprehensive literature review (Chapter 2) of the in-

tersection of research in genetic algorithms and ABM parameter analysis.
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(2) We have extended Miller’s [1998] work on Active Nonlinear Testing, and developed
a new framework (Chapter 3) for using metaheuristic search methods (such as GAs)
to explore and analyze ABM behavior.

(3) We have shown, through a series of case studies (Chapters 4 through 7), that genetic
algorithms can be an effective method for exploring and discovering interesting
behavior in serious modeling research in a variety of fields. These case studies also
resulted in contributions to the application domains.

(4) We have derived new heuristics for quantifying the impact of uncertainty on noisy
fitness landscapes (Chapter 8).

(5) We have designed a suite of ABM analysis benchmarks on a variety of models with
varying levels of search space dimensionality and complexity (Chapter 9).

(6) We have and performed the first comprehensive experiment benchmarking perfor-
mance of genetic algorithms against other comparable metaheuristic search algo-
rithms (Chapter 9).

(7) We have designed and developed a new tool ( BehaviorSearch), to allow ABM practi-
tioners to easily apply genetic algorithms (and other metaheuristic search methods)

to analyze the parameters of their models (Chapter 10).

11.1.2. Additional Applications and Implications

While in the preceding chapters we occasionally touched on the broader impact of the con-
tributions of this thesis work, here we will provide some additional perspective on the con-
nections to other applications or research areas.

Noise reduction methodology. In Chapter 8 and also Chapter 9 we investigated the

impact of noisy fitness evaluation in conjunction with fitness caching. This line of research
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is beneficial not only for ABM exploration, but also for other domains with slow noisy
fitness evaluation. For instance, evolving cellular automata rules [Packard, 1988; Mitchell
et al., 1996; Sondahl & Rand, 2007] is another area which is similar in this respect. For
even moderate-sized lattices, it is impossible to evaluate the rules on all possible initial
configurations, so fitness evaluations of the rules are only noisy estimates of the rule’s true
performance. Furthermore, fitness evaluation can be slow, depending again on the lattice
size, and the number of iterations the CA rules are applied. Similar issues can arise in various
industrial design problems — e.g., if the fitness of a design is evaluated by a lengthy discrete-
event simulation that uses randomly generated scenarios to test a product’s performance.
Interactive GAs [Caldwell & Johnston, 1991] are another notable example where this analysis
could be applicable, as they use humans to evaluate fitness, thus causing fitness evaluation
to be typically both noisy and (very) slow.

Multi-agent systems and multi-agent learning. The field of agent-based modeling is
closely related to, and sometimes overlapping with, the field of “multi-agent systems” (MAS).
Agent-based modeling, which has been the primary concern of this document, attempts to
simulate (or reproduce) the emergence of some natural or artificial phenomenon, through the
interactions of multiple agents. In multi-agent systems, there is often a goal of engineering
a multi-agent system to accomplish some specified task. For instance, the goal could be
having a team of small autonomous fire-fighting robots collaboratively extinguish a burning
building. In this case, the researcher’s challenge may be to discover a set of rules by which
these fire-fighting robot agents should act, such that they will exhibit a reliable strategy for
extinguishing a burning building in a wide variety of real-world settings. Another example
of multi-agent systems research would be the development of software agents that engage

in independent bidding in online auctions/markets. A third example of multi-agent systems
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research is the classic RoboCup competition [Kitano, Asada, Kuniyoshi, Noda, & Osawa,
1997], wherein teams of robots play soccer against one another. Multi-agent systems research
is often coupled with the study of “multi-agent learning” - that is, techniques that agents (or
teams of agents) can use to improve their performance on some goal task over time. For more
information about the area of multi-agent learning, see the excellent survey by Panait and
Luke [2005]. A primary difference between agent-based modeling and multi-agent systems
research stems from the intended objective: is it to create a model for the sake of better
understanding a system, or is it to create a system that performs some useful task? However,
there is not always clear-cut agreement on the precise definition of either ABM or MAS (for
instance, some consider MAS to be a sub-genre of ABM, and vice versa) and it is a blurry line
that divides these two areas of research. The semantic debate aside, much of this thesis work
will be useful for multi-agent system research as well as ABM research. For example, when
designing a team of virtual soccer-playing bots, there will naturally be a number of global
parameters associated with the bots (such as maximum-kicking-speed) and the environment
(such as grass-friction-coefficient). It would be informative to explore the parameter-space
of this multi-agent system, to calibrate the agent properties for optimal performance, or to
discover the changes in environmental properties that the bots are most sensitive to. In
some cases, multi-agent learning problems can be recast as parameter search problems, in
which case, using a genetic algorithm to search for a specified behavior in the parameter
space of a MAS is equivalent to evolving agents (or teams of agents) capable of performing
a desirable task. However, sometimes the agent-level behavior is not best characterized
by a set of global parameters: for instance, the team of agents may require heterogeneous
behaviors, or agent behavior may be best represented as a flexible computer program, rather

than fixed rules with parameters filling in the blanks, in which case a different technique such



354

as genetic programming (GP) may be more appropriate. However, the applicability of the
theories, methods, and tools developed in this thesis spill over into multi-agent systems to
some extent, and in some cases they even assume a new interpretation as solving multi-agent
learning problems.

Evolutionary testing and verification in stochastic systems. As mentioned above,
one of the thesis contributions was to develop a methodology and framework for using search-
based techniques to address a variety of agent-based model exploration tasks, including some
aspects of model testing and verification (such as sensitivity analysis leading to the discovery
of a bug in the Artificial Anasazi model in Chapter 6).

There are numerous applications where there is a stochastic computational system (possi-
bly hardware, software, or a network of computational devices) whose behavior is dependent
on a number of parameters. In general, it is a difficult task to verify that the system is
operating correctly, and that various types of anomalous behavior cannot occur. However,
it may be helpful to use search techniques to evolve parameters that lead to various types of
extreme behavior. If the extreme behavior is outside the range of acceptable behavior, there
is evidence of a problem. Additionally, evolutionary search methods can test whether small
perturbations in combinations of parameters can yield significantly different behavior. Thus,
the work presented herein regarding the use of genetic algorithms for testing/verification of

agent-based models may extend to broader software/system testing applications.

11.2. Future Work

As stated above, this dissertation is not intended as the “final word” on this subject,

and it would be incomplete if it did not also identify key challenges that remain, as well
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as provide guidance for future areas of fruitful research. This thesis has laid the necessary

groundwork for several important research directions.

11.2.1. Further benchmarking

The development of a set of benchmark models and exploration tasks (Chapter 9 provides
the necessary substrate for further experimentation regarding which metaheuristic search
methods are most effective for agent-based model exploration. Although this thesis presented
the most comprehensive comparison of search algorithms in this domain to date, much work
remains to be done. Here are the three most promising lines for continuing research in this

vein:

(1) Due to pragmatic constraints, the parameters of the search algorithms themselves
were not varied. While sensible default values were chosen, additional experiments
may reveal important trends in GA parameters such as the mutation-rate, crossover-
rate, or population-size.

(2) There are several other metaheuristic search algorithms that should be tested —
e.g., particle swarm optimization [Kennedy et al., 1995], harmony search[Geem et
al., 2001], or the cross-entropy method [Rubinstein & Kroese, 2004].

(3) Although the models and tasks chosen for benchmarking represent a reasonably
broad spectrum of QBME analysis, it is not comprehensive. Additional models and
tasks may be desirable to include in benchmarking, and some of the current models
and tasks should be reconsidered (for instance, the Segregation task may be too easy

to be useful for evaluating search algorithm performance).
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11.2.2. Multi-objective exploration

In a footnote in Chapter 3, we mentioned that it is not truly necessary to condense all of
the information about a model run down to a single number, in order to search for behavior
in the model. In fact, there is a thriving area of research called multi-objective optimization
which focuses on searching for parameters that maximize (or minimize) multiple quantities
simultaneously, and evolutionary algorithms have been shown to perform well on such tasks
[Deb, Agrawal, Pratap, & Meyarivan, 2000; Zitzler, Laumanns, Thiele, et al., 2001; Deb,
2001]. There is also a body of research attempting to bridge work on multiobjective opti-
mization with agent-based modeling and multi-agent systems [Socha & Kisiel-Dorohinicki,
2002; Rogers et al., 2004; Narzisi et al., 2006]. The extension of the QBME framework to
handle multiple objective functions is reasonably straightforward. Instead of choosing a sin-
gle behavior, practitioners would choose multiple behaviors, and design multiple objective
functions that quantify those behaviors. For each search, the multi-objective search algo-
rithm would return a set of Pareto-optimal parameter settings, rather than just a single
“best” choice for the parameter settings, and users would be able to examine the trade-offs
between the various behaviors, and the extent to which the behaviors could be elicited from
the model simultaneously (using the same parameter settings). This is how it would work
in theory. In practice, BehaviorSearch would need to be extended to include multi-objective
search algorithms (such as SPEA2 [Zitzler et al., 2001] or NSGA-II [Deb et al., 2000]), and
provide additional support for effectively visualizing the resulting Pareto-fronts (which poses

challenges for high-dimensional datasets).
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11.2.3. Additional Case Studies

Each of the case studies (Chapters 4 to 7) provided new insights or perspectives on explo-
ration and analysis tasks in ABM research domains. Thus, additional case studies are also
likely to be helpful and informative. I have been working on an ABM that I developed in
conjunction with colleagues in the Linguistics Department at Northwestern University re-
garding how language can change or evolve in a social network context. Of particular interest
is the conditions under which “language cascades” are (or are not) likely to occur. During
the course of this work, I applied BehaviorSearch to find parameter settings that were partic-
ularly conducive to cascades. As a result, we identified an important region of the parameter
space that we had not yet considered. I have also been in communication with a researcher
who has created an agent-based model of hybrid/alternative-fuel vehicle adoption, and who
is interested in applying QBME methodology to calibrate the model parameters against
real-world data. More extensive exploration of the affordances of search-based exploration

in these or other models could be enlightening.

11.2.4. Fitness landscape characterization

For several of the tasks with smaller search spaces, we examined the complete fitness land-
scape. With the tasks with larger search spaces, exhaustive experiments like this are impos-
sible. However, it still may be possible to partially characterize these fitness landscapes. For
instance, one might be able to estimate the number of local optima present in the space, and
the size of the basins of attraction for each of these optima. The presence of noise confounds
efforts to characterize landscapes in this manner, and the noise must be taken into account.

Thus, this process is by no means trivial. However, it would be useful to develop a scheme
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for fitness landscape profiles, to characterize ABM tasks and possibly group them into sim-
ilar categories. If it were possible to efficiently create these fitness landscape profiles, then
search methods could be tailored to ABM analysis tasks on an individual basis, with the
potential to drastically improve search performance. On a related note, it would be useful
to have a method for ranking the “complexity” of model exploration tasks, since the number
of parameters (search space dimensionality), the resolution for varying parameters, and the
amount of “noise” in the results provide only an incomplete picture of the complexity of
the task. This ranking would help with the development of appropriate benchmarks, and in

judging search algorithms relative performance on tasks of varying complexity.

11.2.5. Recombination and epistasis

One key hallmark of classic genetic algorithms (in contrast to other stochastic search mech-
anisms, such as hill climbing, simulated annealing, or particle swarm optimization) is the
use of a crossover operator, which permits recombination of information during the search’s
progress toward a solution. That such recombination is beneficial is related to the build-
ing block hypothesis [D. E. Goldberg, 1989], which posits that genetic algorithms work by
combining small contiguous pieces of solutions (“building blocks”) to create better solutions.
However, for many problem domains the benefits of crossover are uncertain. An important
area of future research is to consider the extent to which crossover is beneficial in the domain
of ABM exploration, and whether crossover can be improved in this context. In previous
work [Stonedahl, Rand, & Wilensky, 2008a], I proposed a novel crossover mechanism called
CrossNet, which uses a flexible network as the underlying chromosomal structure rather than

the typical linear genome ordering. The level of performance benefit that can be gained from
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this expanded chromosomal representation is unclear at present, but it does provide a mech-
anism for incorporating a priori domain knowledge into the search process, through the
specification of epistatic interaction links between parameters in the chromosomal network.
This touches on a rather general question in Al: in what ways, and to what extent, should
human intuition be combined with black box search algorithms, so as to best take advantage
of the strengths of both? To entirely eschew the use of human knowledge of a domain during
a search process is arguably foolish and inefficient, but alternatively, implanting too much
human bias may prevent the evolution of unexpected and surprisingly good solutions. An
investigation of this idea could: 1) provide a real testbed for the CrossNet mechanism, 2)
contribute to the understanding of the role of crossover in genetic algorithms, and 3) have
broader implications regarding the inclusion of domain-specific knowledge within the general

metaheuristic framework of genetic algorithms.

11.2.6. Algorithmic and cognitive biases

In a footnote in Section 2.1, I asserted that computational search methods such as ge-
netic algorithms have different biases than human researchers when exploring the parameter
space of an agent-based model. The intuition here is that researchers’ expectations will be
strongly flavored by their cognitive representation of the model, and analogies to the target
phenomenon being modeled. For instance, in a model of epidemics, humans would expect
an increase in a parameter named “immunization-fraction” to result in less disease spread,
or in a model of ant foraging, humans would expect an increase in ant-movement-speed to
result in a greater quantity of food being harvested. These intuitions will often be correct,
and thus may lead humans to explore the space of model parameters more intelligently and

efficiently than a computational search algorithm. However, there may be cases where these
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intuitions are false (either because of emergence leading to surprising results, or because the
human misunderstands the parameter’s name and impact on the model rules, or possibly
because there is a bug/error in the model. Since the metaheuristic search algorithm lacks
any representation of model structure, it has no expectations based on parameter names or
analogies to the target phenomenon; it will not be misled by parameter’s names. However,
search algorithms do have their own biases that affect the way that they explore the pa-
rameter space. For instance, most search algorithms make the assumption that if a point
in the parameter space yields good results/behavior, a nearby point in the space is also
likely to be a good choice. However, these arguments that the biases are different are based
merely on my own intuition, rather than experimental evidence. Although I feel confident
that the biases will turn out to be different, I am less sure of exactly how they will be
different, or to what extent. In any case, this would be a very interesting cognitive science
experiment, comparing the way that humans and genetic algorithms go about exploring a
model’s parameter space. Possibly the amount of information given to the human about the
model and target phenomena could also be controlled (i.e., by substituting Greek letters for
the more descriptive model parameter names) to see how this would affect results. Beyond
the merely academic interest, these cognitive experiments might provide insight into how
computer search algorithms could be adapted to mimic human behavior to achieve more
effective results, or how search algorithms might be tailored to specifically complement the

deficiencies and biases present in human exploration behavior.

11.2.7. Unsupervised exploration

I am convinced that unsupervised search and exploration of ABM behavior is one of the

most intriguing areas for future work. One arguable drawback of the QBME framework,
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is that it requires users to formulate specific quantitative measures of behaviors they are
interested in. What if no such specification was necessary, and we could design an intelligent
search algorithm that could derive its own measures for the given model, in order to discover
interesting points or regions of the parameter space? As a specific case, we could imagine a
phase-transition-detection algorithm, which would scour the search space for drastic changes
in output patterns based on small changes in the model’s parameters. A key challenge
here is that models produce a monumental amount of information, and sifting through that
information to create relevant condensed measures of ABM behavior will be challenging.
To simplify the problem, one might ask the user to enter a large number of “variables
of interest” for the model - or possibly the information could be automatically extracted
from the plots and monitors in the ABM’s interface. Even in this simpler case, there are
challenges to finding patterns among a medium number of temporally-varying outputs. One
possibility would be to use a hybrid of genetic algorithms with unsupervised clustering
algorithms (to identify similar behavioral regimes amongst the output data). It may also
be possible to cast this problem within an active learning framework, wherein the machine
learning algorithm must decide (based on past history) what sampling point in the search
space would be most informative for refining the algorithm’s hypothesis about clusters in
the search space. Recently, Bramson [2009; 2010] has been advocating for the use of Markov
models as a formal representation of ABM behavior. Although unproven, this representation
may provide a richer representation than simply using a collection of numeric time-series.
It would be interesting to test this theoretical approach in practice by training a Markov
model (e.g., using the Viterbi algorithm [Viterbi, 1967; Forney Jr, 1973]) with varying model
parameters and then perform clustering on the resulting Markov models to identify regimes

in the parameter space. There are, in fact, a large number of machine learning methods that
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might be employed, including decision/regression trees, neural networks, and support vector
regressions. However, further research and experimentation will be required both to devise
appropriate methods for applying these algorithms and to assess the effectiveness of these
various approaches. The possibilities are tantalizing — an artificial intelligence agent could
independently analyze ABMs and provide human researchers with a set of observations and
points of interest. Collaborative human-Al research is an active area in general, and this
application offers the potential to eventually revolutionize how scientific model analysis is

performed.

11.2.8. Emergence and the art of quantifying the qualitative

Emergence is one of the key ideas in the field of complexity science; myriad systems, com-
posed of simple interacting entities, exhibit emergent properties. Sometimes these emergent
properties are relatively straightforward to measure. For instance, in a complex system of
fireflies synchronizing, a completely synchronized state can be detected by noting when all
of the fireflies both start and stop flashing at the exact same times. A simple measure-
ment of partial synchronization could be counting the maximum number of fireflies that are
flashing at any given instant, but what if there are disparate groups of fireflies synchronized
at the local level, but not all the groups are synchronized at the global level? Perhaps a
more sophisticated measure might analyze the Fourier decomposition of the signal generated
by the history of flashes over time. Furthermore, in many cases emergent behavior can be
visually observed and identified by humans much more easily than it can be quantified, or
identified by computer systems. Consider the NetLogo Flocking model [Wilensky, 1998]:
what is it about the aggregate behavior that brings the model to life, creating the resem-

blance of real birds or schools of fish? It is not the convergence to a steady state (either in
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location or alignment), but rather the dynamic equilibrium of birds flowing in and around
each other in structured, yet partially chaotic, patterns. Attempting to quantify complex
dynamic patterns such as this is a challenging task, and developing robust methods for doing
this would contribute significantly to complex systems research. Chapter 3 presented some
work in this area, using the organizing principles of levels and diversity to generate a rich
array of behavioral measures. Through the development of quantitative measures of specific
emergent properties in several example models and case studies (Chapters 4, 5, 6, 7, 9), this
thesis provides useful material for continuing research in this direction. Future work may be
able to draw on the measures of ABM behavior provided in this thesis to develop a more
universal framework, or find behavioral measures that apply broadly to a variety of models.
Complex systems researchers have not yet converged on a formal/quantitative definition of
the concepts of either emergence or complexity. Nevertheless, the ability of intelligent com-
puter systems to detect or discover emergence promises to be an important (and exciting)

area in coming years.

11.3. Last words

My hope is that the seeds that were sown in this thesis will bear fruit in an abundance
of research using and refining the query-based model exploration framework, and further
probing how genetic algorithms can improve ABM analysis. Thus, although the words have
been taken out of their original context, the quotation of Winston Churchill (that prefaces
this chapter) seems remarkably apropos in this instance. This final thesis chapter is not the

end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.
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