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ABSTRACT

Genetic Algorithms for the Exploration of Parameter Spaces in Agent-Based Models

Forrest J. Stonedahl

This work provides the first comprehensive investigation of the use of genetic algorithms for

exploring the range of behaviors produced by agent-based models. Agent-based modeling

(ABM) is a powerful computer simulation technique in which many agents interact according

to simple rules resulting in the emergence of complex aggregate-level behavior. However, as

ABM is increasingly employed in both natural and social sciences, the methods and tools for

understanding, exploring, and analyzing the behavior of agent-based models have not kept

pace. In particular, models may be characterized by a large number of parameters, and the

task of discovering parameter settings for which a model will produce a certain behavior is

both difficult and time-consuming. Genetic algorithms (GAs) offer a flexible metaheuristic

search mechanism which has previously been successful in a variety of combinatorial opti-

mization and search problems. There is a rich space of possible model exploration tasks, and

we offer a new unified framework for the creation and application of quantitative measures

to perform these tasks using an evolutionary-search paradigm. We demonstrate the utility

of GAs for ABM parameter exploration through a sequence of case studies in various ap-

plication domains, including behavioral biology, viral marketing, archeology, and web-based

journalism. This work advances agent-based modeling methodology by exploring when and
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how GAs can be useful in the model development and analysis process. It also contributes

to a deeper understanding of GAs, by evaluating their strengths and weaknesses with regard

to the particular challenges posed by this problem domain. We develop novel heuristics for

dealing with model stochasticity in conjunction with fitness caching techniques. We also

present the first set of benchmark models/tasks for automated ABM parameter search and

exploration, and we rigorously investigate the performance of GAs on these benchmarks, with

varying levels of stochasticity. An important product of this research is BehaviorSearch, a

new automated software tool for efficient exploration of ABM parameter spaces. The design

and affordances of BehaviorSearch are discussed with respect to improving model exploration

and analysis by ABM practitioners.



5

Acknowledgments

First and foremost, I thank my wonderful wife Susa, who insisted that I not get all mushy

in these acknowledgements. So I won’t. There is insufficient space to give her the thanks

she deserves in any case. Second and still foremost, I thank our Siamese cat, Gabby, who

insisted that I thank her in these acknowledgements. Either that or she was just meowing

because I forgot to feed her in my thesis-writing haze. Sometimes it’s hard to know.

It goes without saying that this thesis could never have come to fruition without the

support of my advisor, Uri Wilensky, who first introduced me to the marvelous world of

agent-based modeling, complex systems, and emergence. Uri also possesses an uncanny

ability to gather together a research group composed of some of the most intelligent, quirky,

and amazing people I have ever met. I am deeply honored to have been a part of the Center

for Connected Learning and Computer-Based Modeling these past years. It has been a

place of much intellectual growth, and I will never forget it. I thank everyone in the CCL

– for the thought-provoking conversations, the good advice, the frenetic Google-document-

sharing chats, the late-night 3D-printer surgeries, the inspiration to improve education and

technology, and all of the laughter along the way. I particularly wish to single out Michelle

Wilkerson-Jerde, who walked side by side with me this past year on the simultaneously

treacherous paths of thesis writing and academic job searching. Special thanks also goes

to Josh Unterman and Daniel Kornhauser who each, in their own inimitable ways, shared

oysters of wisdom with me.



6

I am also deeply grateful to the other members of my committee: Doug Downey, who

always gave me sensible advice whenever I asked1, Luis Amaral, who taught me about

networks (and whose book recommendations were superlative2), and Bill Rand with whom I

have had the pleasure of collaborating on numerous evolutionary computation projects, and

who has served as a mentor to me on countless occasions.

Thanks to my father for writing his daily blog, and helping keep this Forrest in touch

with his Idaho roots. Thanks also to my mother for unswervingly positive support, and

proofreading portions of this thesis, as well as several of my other papers along the way.

(Who besides a loving mother could enjoy reading a stream of text filled with largely unin-

telligible jargon?) I also thank my brother Birrion, whose ski bum philosophy on life helps

to counterbalance my workaholic nature, and thus I’m sure maintains some crucial harmony

of the universe. I would also like to mention Marion, Joyce and Jack, Karline, Susan, Peggy,

and all those among my extended family and in-laws who have been supportive during my

graduate school years.

I thank my friend Dave Ohls, for the many empathetic and commiserative chats about

the ups and downs (perhaps mostly the downs) of graduate school. And David and Laura

Little for their noble attempts to preserve my sanity with the occasional enjoyable evening

of card/board games.

Thanks also to Valdis Krebs, for his stimulating email discussions and his generosity in

sharing an interesting dataset with me. I thank Janet Pierrehumbert and Robert Daland,

for their collaboration on the linguistics modeling project that is briefly mentioned in this

text. I thank Bryan Pardo for wandering into my office with occasional advice on teaching,

1proving that I should have asked more often...
2see, e.g., Influence: Science and Practice by Robert Cialdani



7

research, job hunting, and random trivia. I am very grateful to NICO (the Northwestern

Institute on Complex Systems) for fostering interdisciplinary research and collaboration at

Northwestern.

I also must thank the miracles of modern technology – this thesis work would never have

been possible without many many CPU-hours churning through millions of agent-based sim-

ulations. For the availability of these computational resources I especially want to recognize:

Luis Amaral, who generously provided time on his computing cluster, Northwestern’s Social

Sciences Computing Cluster, the University of Maryland’s OIT HPCC, and Northwestern’s

new Quest high performance computing cluster (which executed the bulk of the experiments

reported herein). I am also thankful to several sources of funding, which supported this

work at various times and in various ways: specifically, the National Science Foundation

(grant IIS-0713619), a Murphy Society grant from the McCormick School of Engineering,

and a Google and WPP Marketing Research Award. Also, I am grateful for the generosity

of both The Graduate School and the Cognitive Science Program at Northwestern, in pro-

viding supplementary travel grant awards that allowed me to present this work at several

conferences and workshops, and thus receive constructive feedback from my academic peers

at other institutions.

Finally, I thank everyone who I meant to thank but have forgotten in these acknowledge-

ments (which is now, by virtue of self-reference, the empty set).



8

Preface

“... from so simple a beginning endless forms most beautiful and
most wonderful have been, and are being, evolved.”

– Charles Darwin

Though I can’t remember precise words and must plead for some artistic license as I

paraphrase them below, I can still vividly recall one afternoon several years ago in my thesis

advisor’s office, having just expressed a bit of the traditional graduate student angst about

my chosen thesis topic. “Well,” my advisor responded, “it all depends on whether you want

to have a tidy thesis or a messy thesis. (I must have looked aghast – after all, who in their

right mind would want to produce a messy thesis?) “Don’t get me wrong”, he continued, “my

personal preference is toward messy theses. Tidy theses are narrowly-defined, for example:

‘we present a novel algorithm that performs X% better than all previous algorithms for a

specific problem Y’. Messy theses are much broader in scope, expressing powerful ideas and

looking for the big picture.”

Both types of theses are valuable. In the field of artificial intelligence, we often discuss

problem solving strategies in terms of exploration versus exploitation. For instance, if you

are going out to dinner, should you order a slight variation of your favorite dish (exploitation

of previous knowledge with high likelihood of modest reward), or try a new and exotic dish

(exploration in the hope of discovering something far better, but the reward is uncertain).
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Is it better to take a well-known travel route and refine it, or go out hunting for that elusive

‘Northwest Passage’, which might or might not exist? All good theses contribute something

new to their discipline, and the research process always contains some mix of exploration

and exploitation. But in my view, given this spectrum, “tidy theses” put more emphasis

on the exploitation side, while “messy theses” expend more effort exploring. Perhaps as a

result of my name, I also have a penchant for arboreal analogies. “Tidy theses” are akin

to pine trees, thin spikes reaching straight up toward the sky. “Messy theses” resemble oak

trees, spreading out as they reach upward. Or possibly mangroves, which also reach down,

around, and every which way with their roots. But since this thesis is about evolution-

inspired algorithms, perhaps a better metaphor would be the phylogenetic tree of life. This

tree embodies a grand exploration of divergent speciation, fraught with the extinction of

unproductive branches, graced by the explosion of new life forms arising in unexpected

areas, and sometimes captivating by, as Darwin put it, the “endless forms most beautiful”

that have arisen from so simple a beginning. It is my hope that the intrepid reader of this

“messy thesis” will see beyond the occasional knotted root or twisted branch, and emerge

from the experience with a clearer sense of the whole tree, as well as a few thoughtful seeds

that may bear fruit in scientific explorations of the future.

∼ Forrest Stonedahl



10

Originality of materials

In the preparation of this dissertation, I drew upon several of my previous papers. I would

be remiss if I did not give proper credit to my co-authors, to whom I am greatly indebted

for their collaboration on these projects which contributed to my thesis work. Specifically:

• Chapter 4 is adapted from: Stonedahl, F. & Wilensky, U. (2011). Finding Forms
of Flocking: Evolutionary Search in ABM Parameter-Spaces. Multi-Agent-Based
Simulation 2010, T. Bosse, A. Geller, & C. M. Jonker (Eds). Lecture Notes in
Artificial Intelligence 6532. pp. 61–75. Springer, Heidelberg.

• Chapter 5 is adapted from: Stonedahl, F., Rand, W., & Wilensky, U. (2010). Evolv-
ing Viral Marketing Strategies. Proceedings of the 12th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO ’10). July 7-11. Portland, OR.

• Chapter 6 is adapted from: Stonedahl, F. & Wilensky, U. (2010). Evolutionary Ro-
bustness Checking in the Artificial Anasazi Model. In Proceedings of the AAAI Fall
Symposium on Complex Adaptive Systems: Resilience, Robustness, and Evolvability.
November 11-13, 2010. Arlington, VA.

• Chapter 7 is adapted from: Stonedahl, F., Anderson, D., & Rand, W. When Does
Simulated Data Match Real Data?: Exploring Model Calibration Functions using
Evolutionary Computation. Poster presented at GECCO ’11. July 12-16. Dublin,
Ireland.

• Chapter 8 is adapted from: Stonedahl, F. & Stonedahl, S. H. (2010). Heuristics for
Sampling Repetitions in Noisy Landscapes with Fitness Caching. Proceedings of the
12th Annual Conference on Genetic and Evolutionary Computation (GECCO ’10).
July 7-11. Portland, OR.

All other material presented herein is original.



11

Dedication

In loving dedication to my paternal grandparents,

Marion and Jake Hvistendahl,

who encouraged, inspired, and financially supported me on

the path to higher education...



12

Table of Contents

ABSTRACT 3

Acknowledgments 5

Preface 8

Originality of materials 10

Dedication 11

List of Tables 16

List of Figures 19

Chapter 1. Introduction and Motivation 32

1.1. Backdrop 32

1.2. Agent-Based Modeling 35

1.3. Illustrative Example 38

1.4. Genetic Algorithms 42

1.5. Overview of Document Structure and Contributions 43

Chapter 2. Literature Review 47

2.1. Overview of General Methods for Model Exploration 48

2.2. Search-Based Exploration of ABMs 52

2.3. Related Genetic Algorithm Research 59



13

2.4. Tools for Automated ABM Search and Exploration 70

Chapter 3. Query-Based Model Exploration: A Theoretical Framework 74

3.1. Formalizing ABM Behavior 79

3.2. Formulating Measures 86

3.3. Application of Measures to Model Analysis Tasks 103

3.4. Applying Measures in Search-Based Exploration 112

Chapter 4. Case Study 1: Flocking/Swarming Behavior 131

4.1. Motivation 132

4.2. Related Work 134

4.3. Methods 136

4.4. Explorations 140

4.5. Conclusion and Future Work 151

Chapter 5. Case Study 2: Viral Marketing 153

5.1. Motivation 155

5.2. Related Work 156

5.3. Local Viral Marketing Problem 158

5.4. The Model 161

5.5. Implementation 168

5.6. Results and Discussion 171

5.7. Follow-Up Experiment on the Alumni Dataset 179

5.8. Side Note on Search Performance 180

5.9. Future Work and Conclusions 181



14

Chapter 6. Case Study 3: Artificial Anasazi – Calibration and Sensitivity Analysis 184

6.1. Motivation 186

6.2. Background and Related Work 187

6.3. Calibration Task 191

6.4. Sensitivity Analysis Task 203

6.5. Conclusions 211

Chapter 7. Case Study 4: Online News Consumption – Calibration Comparison 213

7.1. Motivation 215

7.2. Related Work 217

7.3. News Consumption 219

7.4. Calibration 227

7.5. Results and Discussion 232

7.6. Genetic Algorithm Search Dynamics 238

7.7. Conclusion and Recommendations for Future Work 244

Chapter 8. Fitness Caching in Noisy/Stochastic Environments 245

8.1. Motivation 248

8.2. Related Work 250

8.3. Theoretical Analysis 253

8.4. Experiments 262

8.5. Results and Discussion 264

8.6. Future Work and Conclusions 266

Chapter 9. Comparative Benchmarking in ABM exploration 269

9.1. Description of Models and Tasks 271



15

9.2. Experimental Setup 289

9.3. Benchmark Results 297

Chapter 10. BehaviorSearch: A New Tool for Metaheuristic ABM Parameter Search 333

10.1. Design and Features of BehaviorSearch 336

10.2. Architecture and Implementation 344

10.3. Conclusion 348

Chapter 11. Conclusions 350

11.1. Contributions and Broader Impact 350

11.2. Future Work 354

11.3. Last words 363

References 364

Vita 394



16

List of Tables

6.1 Parameter ranges (low, high, and increment) for the GA calibration task,

compared with ranges explored in a previous grid-based calibration by Janssen

[2009]. 193

6.2 Optimal parameters found by the genetic algorithm for both the calibration and

sensitivity analysis tasks, compared with the parameter settings from the previous

grid-based calibration by Janssen [2009]. 201

7.1 Calibration measure cross-comparison for the toy problem. The best GA-found

parameter settings when optimizing using each calibration measure were evaluated

against the target data using all five calibration measures. GA solutions were also

compared to the original settings that were used to generate the target data.

The best calibration values for each column are shown in bold (correlation is

maximized, whereas the Lp error measures are minimized). (There was no clear

best L0 measure.) 231

7.2 Calibration measure comparison on comScore training and testing datasets. Each

cell gives the mean (and stdev) from 30 replicate simulations. The best GA-found

parameter settings when optimizing using each calibration measure on the January

training data were evaluated against the January data (top) and the December

data (bottom) using all five calibration measures. The best calibration value for



17

each column is shown in bold (correlation is maximized, whereas the Lp error

measures are minimized). (For December, there was no clear best L0 measure.) 238

8.1 Pseudocode for a random-mutation hill climber, which restarts when stalled. 263

9.1 Benchmark ABMs and associated tasks chosen for evaluating search methods.

The models are listed in increasing order of search space dimensionality (shown in

the right-most column), which is equal to the number of free model parameters in

the search task. 272

9.2 Benchmark search performance (at end of search – 20K model runs) with fitness

caching turned on. For each task and noise sampling level (row), the best

performance is shown in bold. Each data point is the average of 30 searches. 300

9.3 Benchmark search performance (at end of search – 20K model runs) with fitness

caching turned off. For each task and noise sampling level (row), the best

performance is shown in bold. Each data point is the average of 30 searches. 301

9.4 Benchmark search performance (averaged across time) with fitness caching turned

on. For each task and noise sampling level (row), the best performance is shown

in bold. Each data point is the average of 30 searches. 302

9.5 Benchmark search performance (averaged across time) with fitness caching turned

off. For each task and noise sampling level (row), the best performance is shown

in bold. Each data point is the average of 30 searches. 303

9.6 Average performance rank for each of the search methods. The possible range

of rank values is between 5.0 and 1.0, with lower scores being superior. This

table shows average ranks (1-best, 5-worst) for the search algorithms across all



18

exploration tasks and noise levels. The best average rank values for each case are

shown in bold. 304

9.7 Benefit of fitness caching when measuring performance at end of search. (+

indicates a positive effect, and - indicates a negative effect.) 320

9.8 Benefit of fitness caching when measuring performance averaged across time. (+

indicates a positive effect, and - indicates a negative effect.) 321

9.9 Summary of the effects of caching, by search algorithm and noise sampling

amount. Each cell shows the number of tasks where fitness caching was beneficial

out of the number of possible tasks. (For Sampling=1 the value is out of 9 rather

than 10 because the FireVariance task was only run for higher sampling levels.) 323

9.10 Average noise level for each task. Noise level is measured as the standard deviation

of repeated behavioral measurements when running the model multiple times with

the same parameter settings. 327



19

List of Figures

1.1 The NetLogo Ethnocentrism model [Wilensky & Rand, 2003; Axelrod &

Hammond, 2003]. In this case, there are eight model parameters, each of which

may take on a large range of values. One parameter, immigrants-per-day,

is integer-valued, while the other seven are real-valued (continuous). If each

parameter may vary between 10 possible levels, the size of the search space would

be 108, and evaluating a single point in that space requires multiple simulation

runs (replicates) since the model is not deterministic. Assuming that it requires

only 10 replicates, and each run takes only 10 seconds, a complete exploration of

this search space would take 1010 seconds, or approximately 317 years for a single

processor. 37

1.2 This is an example visualization of an agent-based model of aircraft boarding,

which is a reproduction of Figure 2 from Capelo et al. [2008]. In this simulation

each passenger is modeled as an individual agent that can interact with other

agents. This is in contrast to aggregate-based modeling techniques, such as using

differential equations to describe the rate passenger flow into the cabin as a

function of the number of passengers already seated. 41

2.1 Screenshot of a prototype version of Kornhauser and Wilensky’s [2009] tool for

visual (human-driven) exploration of ABM parameter spaces. 50



20

2.2 Latin Hypercube Sampling (example shown above for a two-dimensional space)

samples each parameter setting exactly once within each dimension, as opposed

to a factorial experiment design which would sample all combinations of all

parameter settings. If interactions between parameters were linear, one might be

able to extrapolate behavior across the parameter space from this small sampling.

However, ABM parameter spaces are often fraught with complex nonlinear

interactions. 51

2.3 Top left: A visualization from the Diffusion of Language NetLogo model, which

investigates language change occurring in a social network context. Top right: A

plot of average population-level grammar preferences versus time (demonstrating

complex dynamics). Bottom: The 18 controlling parameters of this model: 8

categorical, 4 integer-valued, 5 real-valued, and 1 boolean. 65

3.1 Flowchart highlighting the difference between the QBME paradigm and the

traditional paradigm for model exploration. 76

3.2 The interface of NetLogo’s Wolf Sheep Predation model [Wilensky, 1997e]. Model

parameters are shown on the left, along with several model outputs, such as the

current number of sheep, wolves, and grass, and a plot of these values over time.

The model view on the right shows the spatial locations of the mobile agents in

this model, which are (unsurprisingly) wolves and sheep, as well as the amount of

grass present on each stationary patch agent. 81

3.3 Diagram illustrating the state information required to capture the behavior of an

agent based model for a given set of parameter settings. 83



21

3.4 An “agent-monitor” (or “inspector”) window in NetLogo provides a listing of

agent-level variables, along with the current values of each variable, for a single

sheep in NetLogo’s Wolf Sheep Predation model [Wilensky, 1997e]. In this case,

all but the last variable (energy) are default/built-in variables that every mobile

agent (“turtle”) in NetLogo possesses. The energy variable is an additional

user-defined variable specific to the Wolf Sheep Predation model. 87

3.5 A visualization from NetLogo’s Flocking model [Wilensky, 1998], after the birds

have self-organized into a number of disparate flocks. 88

3.6 A visualization from NetLogo’s Preferential Attachment model [Wilensky,

2005], which demonstrates how the power of positive feedback (a “rich get

richer” situation) can create power law degree distributions in natural and

engineered networks. For scale-free networks, one important measure of the

degree distribution is the scaling exponent which describes the power law. For

general networks, a measure of how skewed the degree distribution is may help in

understanding the network structure. 92

3.7 Plot of food remaining in each of the three original food source piles, during a

typical run of the NetLogo Ants model [Wilensky, 1997a]. The much steeper

slope in the decline of one of the three piles corresponds to the presence of a

pheremone-based ant trail to that pile, which causes the ants to exploit that food

source more quickly. 97

3.8 Plot showing the amount of forest burned in the NetLogo Fire model [Wilensky,

1997c] as a function of forest density. This plot also shows the relationship



22

between the derivative (as approximated with a unit change in density) and the

location of the phase transition around 60% density. 108

3.9 Diagram illustrating how a basic genetic algorithm (GA) operates in the context

of evolving parameter settings for an agent-based model. Each individual ij

represents one configuration of parameter settings. 115

3.10 These heatmaps show a two-dimensional slice of the eight-dimensional fitness

landscape for the Wolf Sheep Predation model under two different fitness functions

to search for the extinction of the wolf species. The upper plot fitness function

uses the number of wolves remaining, which provides a reasonable gradient which

can lead the genetic algorithm toward the extinction zone. The lower plot fitness

function simply measures whether the wolves are extinct or not, and thus provides

no information that the search algorithm can exploit. 117

4.1 Search performance for the convergence task, comparing how efficiently the

GA (genetic algorithm), HC (hill climber), and RS (random search) can find

parameters that cause the flock to quickly converge to the same heading. (Error

bars show 95% confidence intervals on the mean.) 142

4.2 LEFT: Distribution of model parameter settings found to cause quickest

convergence in each of the 30 GA searches. All box-and-whisker plots presented

in this chapter show the median line within the lower-to-upper-quartile box, with

whiskers encompassing the remainder of the data, apart from outliers which are

marked with x’s. RIGHT: Visualization of the flock (after 75 model steps) using

the best parameters the GA discovered. 143



23

4.3 LEFT: Distribution of model parameter settings found to cause non-convergence

in each of the 30 GA searches. RIGHT: Visualization of a non-converged flock

using the best parameters the GA discovered. 144

4.4 Comparison of search algorithm performance for the flock heading volatility task.

The final mean performance of the GA was better than the HC (t-test, p < 0.05),

but not substantially so. (Error bars show 95% confidence intervals on the mean.)146

4.5 LEFT: Distribution of model parameter settings (from each of the 30 GA searches)

found to cause the most volatility in flock heading. RIGHT: Visualization of the

flock after 500 model steps (also showing each bird’s path over the last 100 steps),

using the best parameters found by the GA. 147

4.6 Comparison of search performance for the vee-shapedness task on both the

Flocking and Flocking Vee Formation models. (Error bars show 95% confidence

intervals on the mean.) 149

4.7 Distribution of model parameter settings found to yield the best vees in the

Flocking model (left), and the Flocking Vee Formation model (right), in each of

the 30 HC searches. 150

4.8 Visualization of a run of the Flocking model (left), and the Flocking Vee

Formation model (right), using the best “vee-forming” parameters found by the

30 HC searches. Birds are shaded by flock group, dashed lines show average flock

heading relative to the “point” bird, and gray lines show best-fit angles for right

and/or left echelons of the vee formation. The numeric “veeness” measure for

each individual flock is also shown. 150



24

5.1 Visualization of the random, lattice, small world (sw), preferential attachment

(pa), and twitter networks (listed in left to right, top to bottom order). The size

of each node illustrates its degree (number of neighboring nodes) in the network. 165

5.2 Degree distributions for each network, displayed on a log-log plot. As the precise

shape is dependent on binning choices, this histogram is meant only to give a

general sense of the degree distributions. The dotted lines serve only to guide the

reader between data points. 166

5.3 The agent-based model of product adoption in a social network setting,

implemented in NetLogo. The parameters on the left side of the model interface

were held constant during a single GA search, whereas the parameters on the

right side of the interface (which control the initial seeding strategy), were evolved

by the GA. 169

5.4 GA progress (averaged across 30 searches) by network topology, for the ‘medium

virality’ scenario. GA’s reported best-of-run fitness (solid lines) are compared

with the actual NPV values (dotted lines), estimated by 1000 simulation runs,

showing the effect of noise. (Error bars too small to show.) 172

5.5 The best seeding budgets found by the GA for each network type. These are

plotted against (on the x-axis) the Gini coefficient of the degree distributions.

The regression lines are not intended to propose a linear relationship, but merely

to illustrate the correlation. 173

5.6 Box and whisker plots showing the variation among parameters for the best

strategies that the GA found for the twitter network (‘medium virality’ scenario).

These strategies’ NPV performance varied slightly but was consistently high (from



25

733 to 741). (Boxes show middle quartiles with median marked red, and outliers

as ×s.) 175

5.7 Best strategies found by the GA compared against the 5 basic component

strategies. 177

5.8 Components of the best primary sub-strategies the GA found for the twitter

network. Secondary sub-strategies were basically unused: p1 = 1.00 (‘medium’)

and p1 = 0.99% (‘high’). 177

5.9 Visualization of three seeding strategies on the twitter network. 178

5.10 Visualization of the alumni network used in the follow-up experiment as a second

empirically-based social network. 178

5.11 Components of the best primary sub-strategies the GA found for the alumni

network. 180

5.12 Performance comparison for the genetic algorithm (GA), hill climber (HC), and

random search (RS) search methods. Error bars show 95% confidence intervals on

the mean. 182

6.1 Graphical interface of Janssen’s NetLogo implementation of the Artificial Anasazi

model (with additional model parameters exposed). 188

6.2 GA performance for the calibration-15 task. 196

6.3 A histogram displaying the distribution of error values across multiple runs,

comparing the GA calibrated settings with the calibrated settings previously

found by Janssen [2009]. 197



26

6.4 Simulated population histories from 100 model runs, showing both Janssen’s

calibrated settings (a) and the GA’s calibrated settings from the calibration-15

experiment (b), plotted in comparison to the historical data. The flat tops of

the simulated trajectories are artifacts of populations reaching simulated carrying

capacity, as discussed further in [Janssen, 2009]. 198

6.5 The single best runs found from 100 replicate runs with the settings from Janssen

(L2 error = 823.5) and the calibration-1 experiment (L2 error = 733.6), compared

with historical data. 202

6.6 Simulated population histories from 100 model runs with the best calibration-1

parameters, plotted against historical data. 203

6.7 Simulated histories from 100 runs with the best sensitivity experiment settings,

compared with historical data. 206

6.8 Distribution of “best” parameter settings found in each of the 5 GA searches of

the sensitivity-15 experiment. Actual parameter values are displayed as solid

circles, while the boxes and whiskers display the middle 3 runs, and full extent of

the data, respectively. The center x-value in each plot corresponds to the Janssen

calibrated settings. 209

7.1 Visualization of the directed link network for the January comScore dataset.

Node size/color both reflect the total number of observed incoming and outgoing

hyperlinks for each website. 222

7.2 The directed network for the toy problem. 226

7.3 Parameter settings for the best individuals from the best GA-searches for each of

the five calibration measures, for the toy problem. 232



27

7.4 Parameter settings for the best individuals from the best GA-searches for each of

the five calibration measures for the January dataset. 239

7.5 For several of the calibration measures (such as the L1 and L∞ searches shown

here), the GA search performance was significantly improved by the use of

epistatic switches controlling whether certain model parameters were allowed to

vary or not. 241

7.6 Distribution of fitnesses of the best parameter settings found when searching

directly for best correlation with the December comScore dataset. Most of the

30 searches ended up at a suboptimal fitness peak, but a few were able to find a

better solution (that included enabling backtracking for the web surfer agents).

This strongly suggests that maximizing the correlation fitness function was a

“deceptive” problem, in that local optima with large basins of attraction tend to

lead the search process away from superior global optima. 243

8.1 This figure illustrates variables used to determine the existence of a false switch.

N1 and N2 represent the added noise to the original nodes, and ε represents

the vertical distance between the two original neighbors. False switches occur

whenever N1 is greater than ε+N2. 256

8.2 This figure shows 2-D versions of the sphere, Rosenbrock, Schwefel, and Rastrigin

functions we used as our fitness landscapes. The equations are shown below each

plot. 260

8.3 This figure shows the ε-distribution (fitness differences between neighboring

locations) for each fitness landscape. 261



28

8.4 We predicted the probabilities of false switches and false optima occurring using

the measures presented in Section 8.3 and observed the actual probabilities that

each occurred by adding various amounts of noise to each function and evaluating

the resulting proportions of false switches and false optima. 261

8.5 a) Each shaded line shows fitness values reached after some number of evaluations,

for a given noise level, σx. Using this information we calculated the number of

evaluations it took to reach a threshold value, and scaled this by the number of

replicate evaluations required to reduce noise to the specified level (σx). b) This

scaled number of evaluations is plotted at each noise level. We denote the noise

level corresponding to the minimum number of evaluations as σideal, which is the

“sweet spot” target for noise reduction. 263

8.6 This figure shows how inefficient the standard deviation chosen by each method

is by calculating the ratio of evaluations to that required at optimal noise level,

σideal. A perfect solution would have an inefficiency ratio of 1.0. 265

9.1 The NetLogo Fire model user interface. 274

9.2 The NetLogo Segregation model user interface. 276

9.3 The NetLogo Ants model user interface. 277

9.4 The NetLogo Fireflies model user interface. 279

9.5 The NetLogo Daisyworld model user interface. 282

9.6 The NetLogo Heatbugs model user interface. 285



29

9.7 Wolf and moose abundances recorded on Isle Royale (Lake Superior) in Michigan,

U.S.A. Source: The Wolves and Moose of Isle Royale project [Vucetich et al.,

2011]. 287

9.8 Fitness landscape for the FireDeriv task. 307

9.9 Fitness landscape for the FireVariance task. 308

9.10 Search dynamics (performance over time) for each search algorithm on the

Segregation task, with Sampling=25 and fitness caching turned on. (Error bars

show 95% confidence intervals on the mean.) 311

9.11 Fitness landscape for the Segregation task, calculated by exhaustive search of the

space using 100 repeated model runs for each combination of parameters. 312

9.12 Fitness (and noise) landscape for the Ants task. The best locations found by

Calvez and Hutzler (C & H) [2005] and 30 GA-Gen searches (with caching and

Sampling=25) are compared to the global best (from an exhaustive search).

Substantial noise persists in the high fitness regions. 313

9.13 Selected slices of the fitness landscape for the Fireflies task, calculated by

exhaustive search using 100 repeated model runs for each combination of

parameters. 315

9.14 Best-so-far performance for the Flocking task for GA-Gen with caching (a) and

RS without caching (b), demonstrating the potential for negative impact of

insufficient noise reduction. 316

9.15 Best-so-far performance for each of the different search algorithm on the WolfSheep

task with Sampling=10 and fitness caching turned on. Error bars show 95%

confidence on the mean. Note that despite running each search 30 times, the



30

confidence intervals are still fairly wide, meaning that search performance can

vary substantially from one search to another. 322

9.16 Caching benefit search dynamics in the Ethnocentrism task, for the GA-SS

algorithm, with varying levels of sampling to reduce noise in the fitness evaluation.

Benefit is measured as the difference between the average search performance

(over 30 independent searches) with caching and without. 325

9.17 Distribution of noise in the search spaces for six of the ABM exploration tasks,

as estimated from 1000 randomly sampled points in the search space, with 10

replicate runs at each point. 327

9.18 Distribution of differences between neighboring points in the search space

(ε-distribution), for six of the ABM exploration tasks, as estimated from 1000

randomly sampled points in the search space, with 10 replicate model runs at each

point and its neighbor (obtained by the mutation operator). 328

9.19 The probability of a false switch due to noise in the fitness evaluation, for each

benchmark task and noise reduction sampling level. 329

9.20 The probability of a false switch due to noise in the fitness evaluation, for each

benchmark task and noise reduction sampling level (with fitness caching turned

on). 331

10.1 Windows graphical installer for BehaviorSearch. 338

10.2 BehaviorSearch GUI for designing experiments involving model search, exploration,

and optimization. This screenshot shows a search protocol for one of the FireDeriv

exploration tasks discussed in Chapter 9. 339



31

10.3 BehaviorSearch GUI dialog for launching search experiments. 340

10.4 BehaviorSearch GUI dialog displaying search progress: this includes the fitness

levels achieved as the search progresses, the best parameter settings found by the

search so far, the percentage of the search that is completed, and an estimate of

the amount of time remaining. 341

10.5 BehaviorSearch website, with supporting documentation and materials. 342

10.6 BehaviorSearch command line version. When BehaviorSearch is run without

arguments, it displays all of the command line options/usage information, as

shown above. 344

10.7 Design schematic of the BehaviorSearch architecture. 346

10.8 Example search protocol (in XML format) for one of the FireDeriv task

experiments. 348



32

CHAPTER 1

Introduction and Motivation

“It [the computer] is the first metamedium, and as such it has
degrees of freedom for representation and expression never before
encountered and as yet barely investigated.”

– Alan Kay

“Revolutions always come around again. That’s why they’re
called revolutions.”

– Terry Pratchett, Night Watch

1.1. Backdrop

We are in the midst of a scientific revolution, resulting from the integration of efficient,

ubiquitous, and inexpensive computation into everyday scientific practice. Perhaps in recent

years the word “revolution” has been so well-worn that it has lost much of its meaning.

Our society is full of pundits and aspiring visionaries declaring how the world, the nation,

the internet, or your routine kitchen cleaning is being (or can be) revolutionized by new

products or technologies. Nonetheless, I contend that this is a true revolution, and that

this revolution has important consequences for the future. Admittedly, digital electronic

computers have been employed in science and engineering settings since their invention in

the early 20th century (and earlier computing machines, such as mechanical calculators or

Babbage’s programmable “difference engine” which go back centuries further). However, for

many years, in the majority of scientific practice, computers were used as little more than
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glorified calculators, capable of evaluating far more complicated mathematical expressions

than were previously possible, and of crunching data more accurately and efficiently (by

many orders of magnitude) than the human “computers” they had supplanted. Although

this capability alone was a giant breakthrough that permitted scientific endeavors to be

undertaken on a previously unimaginable scale, it does not represent the fundamentally

qualitative change which computers are currently making on the way science is conducted.

That qualitative change stems from computer’s universal flexibility – the potential for it to

act like anything else. This is by no means a new idea: pioneers of computing like Alan

Turing and John von Neumann fully recognized this incredible power, and Alan Kay and

Seymour Papert stand out as more recent advocates of the protean nature of computers.

This nature is what allows computers to “simulate” other systems, both real and imaginary,

and it permits the creation of computational models of natural and social phenomena.

However, it is only in the past couple of decades that this form of simulation-based

computer modeling, rather than purely mathematical modeling, has really taken hold and

invaded everyday scientific practice. Whereas 20-30 years ago, science experiments were

being performed in vivo, ex vivo, in vitro, and in situ, today more and more experiments are

being performed in silico. This is no longer merely running statistical regressions and finding

trend lines, but more explicit simulations from first principles, from axioms, from underlying

assumptions, and from observed interactions. And perhaps most striking, it is invading social

science fields traditionally considered to be less quantitative such as anthropology, archeology,

sociology, psychology, political science, and others. It would be simpler to enumerate the

scientific fields that are unaffected by this paradigm shift in computational modeling. I

believe there are none. This is not to say that simulation is the best approach to solve

any question in any field – only that every field has its share of questions that can be
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approached through simulation. The ability to create virtual models of any phenomena

being studied is incredibly useful, and although this has been known to a few for a long

time, it is being continually rediscovered by scientists and researchers across the globe. The

computer’s capacity to be transformed into a microworld that mimics aspects of reality,

based on the rules that we prescribe for it, permits not just more science, but different

science. Wolfram [2002] argued along these lines in his influential book A New Kind of

Science, although he latched specifically onto cellular automata, which is only one type of

constructive computational modeling, whereas I would argue that cellular automata are often

too constraining to use to model most real world systems, and that other approaches, such as

agent-based modeling (discussed below), usually provide a more flexible approach. Some have

made an analogy between the current transition from traditional equation-based models to

algorithmic computational models and the transition from the Roman numerals to the Arabic

numerals for representing numbers; such transformative shifts require a “restructuration”

of existing knowledge representations, and the result is new paradigm for thinking about

and undertaking science [Wilensky & Papert, 2010; Wilensky, 2006]. The broader point is

that the possibilities for virtual experiments go far beyond those constrained by real-world

experimentation, and they can often provide more explanatory power than mathematical

equations and statistical correlations. There have been many factors contributing to the

current rise of constructive simulation-based computing in science, but several stand out.

(1) The availability of inexpensive and increasingly powerful computing has fueled the

increased adoption.
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(2) The creation of supporting tools and languages (e.g., [Wilensky, 1999, 2000; Resnick,

1994; Resnick & Wilensky, 1993; Wilensky & Resnick, 1999]) have lowered the

threshold for developing such models, especially for non-expert programmers.

(3) Rather ironically, despite academia’s general tendency toward politically liberal

viewpoints, it can be staunchly conservative within its own domain. Even to-

day, many fields continue to reject new methodological tools such as computational

models, clinging fiercely to long-established equation-based techniques. Slowly (but

surely, I believe) the tides are turning, as the new methods diffuse through the social

network that comprises the scientific community.

This setting provides the backdrop for the work of this dissertation, which will focus only

on one specific form of computational modeling (agent-based modeling), and will investigate

the affordances of one specific method (genetic algorithms) of analyzing and exploring the

behavior of such models.

1.2. Agent-Based Modeling

Agent-based modeling1 (ABM) is a powerful simulation technique that is being increas-

ingly applied in a wide range of scientific research endeavors [S. Bankes, 2002; Berry, 2002;

Bryson, Ando, & Lehmann, 2007; Harrison, Lin, Carroll, & Carley, 2007; N. Gilbert &

Troitzsch, 2005; Huang, Xiang, Madey, & Cabaniss, 2005; Wilensky & Rand, in press]. Si-

multaneously, agent-based modeling is emerging as its own area of research, focusing on the

study of ABM methodology and associated techniques, rather than on its application to

any particular field. In agent-based models, many agents interact according to simple rules,

1sometimes alternatively called individual-based modeling, or multi-agent simulation
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resulting in the emergence of complex aggregate-level behavior. The emergence of quali-

tatively different behavior at the aggregate-level than at the level of its constituent parts

is a hallmark of complex systems, which has been discussed both in the academic sphere

[P. Anderson, 1972; Simon, 1973; Bar-Yam, 1997] and introduced to lay audiences through

a number of popular books [Waldrop, 1992; Gell-Mann, 1995; J. H. Holland, 1995; Mitchell,

2009]. Attempts to formally prove theoretical properties of these complex agent-based sys-

tems rarely succeed, and in most cases more empirical methods of analysis and testing are

necessary [Edmonds & Bryson, 2004]. However, the number of controlling parameters (and

range of possible values) for agent-based models is often large, the computation required to

run a model is usually significant, and the models are predominantly stochastic in nature,

meaning that multiple trials must be performed in order to assess the model’s behavior (see

Figure 1.1, for example). These factors combine to make a brute-force exploration (or “fac-

torial design” experiment) of model behavior infeasible. Furthermore, agent-based models

may constitute complex systems in which the interactions between parameter settings are

highly non-linear, so testing the effects of varying individual parameters separately is not

a reliable approach for predicting the effects when multiple parameters are varied simulta-

neously. Despite those caveats, the simplicity of these analytic approaches (factorial and

univariate) has resulted in widespread use throughout the modeling community.

In my estimation, the current state of affairs is grim indeed. At a recent conference I

attended, I was shocked when one of the keynote speakers (who shall remain nameless),

admitted that he usually did not perform any type of parameter variation (not even basic

factorial sweeps) even though he is in the business of using agent-based models to advise the

U.S. Department of Defense on a variety of high profile issues. Unfortunately, this anecdote

highlights that the problem is in part a cultural one. Regardless of what new and improved
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Figure 1.1. The NetLogo Ethnocentrism model [Wilensky & Rand, 2003; Ax-
elrod & Hammond, 2003]. In this case, there are eight model parameters, each
of which may take on a large range of values. One parameter, immigrants-per-
day, is integer-valued, while the other seven are real-valued (continuous). If
each parameter may vary between 10 possible levels, the size of the search space
would be 108, and evaluating a single point in that space requires multiple sim-
ulation runs (replicates) since the model is not deterministic. Assuming that
it requires only 10 replicates, and each run takes only 10 seconds, a complete
exploration of this search space would take 1010 seconds, or approximately 317
years for a single processor.

model exploration techniques we propose, or how user-friendly we can design the software

for performing these tasks to be, issues like these will persist until the cultural norms of

the agent-based modeling community have shifted to give appropriate weight to the analysis

of model parameters as part of the verification and validation within the modeling process

[Wilensky & Rand, 2007, in press]. At present, the sophistication of parameter exploration

methods varies widely across and within modeling communities, and in most cases best

practices have not been established. However, the socio-cultural battle for increased rigor
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in agent-based model analysis is outside the scope of this thesis, and I am optimistic that

the availability of more advanced (yet easy-to-use) methods of exploration (such as those

promoted in this document) will break down some of the technical barriers to change, and

help to move this scientific community in the right direction.

While simple methods like factorial sweeps are adequate in some cases, there is a large

class of agent-based models for which the parameter space is too large and the interac-

tions between parameters are too complex. Thus, more sophisticated search techniques are

needed to explore and discover interesting areas of the parameter space. Genetic algorithms

[J. Holland, 1975; D. E. Goldberg, 1989] are one natural choice, since they have proven to be

successful in numerous nonlinear combinatorial search/optimization problems. The general

idea of genetic algorithms will be introduced in Section 1.4 below, as well as explained in

greater detail in the specific context in Chapter 3.

1.3. Illustrative Example

In order to discuss the general problem of model exploration in a more concrete manner,

let us elaborate one example that demonstrates the utility of searching the parameter-space

of an agent-based model. In particular, consider an agent-based model of airplane boarding,

similar to the simulations performed by Ferrari and Nagel [2005], or Capelo et al. [2008].

In such a simulation, each passenger is modeled as an agent with varying characteristics

(assigned seat, number of carry-on items), who will enter the aircraft (according to various

boarding-group schedules), move toward their seat, place their luggage in an overhead bin,

and sit down. As any frequent flier knows all too well, this process may be delayed by stand-

ing in the aisle, waiting for other passengers to get out of the way, getting up out of a seat to

let someone else pass to their window seat, etc. One goal of creating a simulation could be
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to determine what policies an airline company can make that would hasten and/or smooth

the boarding process (as in [Ferrari & Nagel, 2005]). However, social scientists might wish to

study the process of airline boarding for entirely different reasons. Psychologists might wish

to examine frustration levels as a result of delays in the distributed queuing process. Social-

ogists or anthropologists might be interested in using airplane boarding studying cultural

differences in pairwise spatial distances between strangers in a constrained environment.

Economists might want to investigate price discrimination in seating order, and the differen-

tial utility in going earlier rather than later in the boarding process. In each of these cases,

an agent-based model of airplane boarding would allow scientists to explore counter-factual

scenarios, test the sufficiency of various hypotheses as generative explanations for the ob-

served behavior, etc. For an extended (and much more eloquent) discussion of the reasons

for and benefits of creating agent-based models (which go significantly beyond prediction),

I point the reader to the excellent short paper “Why Model?” by Joshua Epstein [2008].

Regardless of the purpose of model creation, there are a number of parameters associated

with an ABM such as this. First, there are parameters that the airline may have some control

over (boarding seat schedule, number of carry-on items allowed, amount of intervention by

airplane stewards in the boarding process, floor plan of aircraft, etc). It might be useful to

find choices for these parameters that yield minimal time for the boarding process. This is

a classic case of “simulation optimization”, but in fact model exploration extends beyond

optimization in many ways, as will be discussed further in Chapter 3. One might also

be interested in finding so-called leverage points [Forrester & Collins, 1969; Meadows, 1997;

J. Holland, 2008] in the space, where a small increase in one (or several) parameters can yield

a considerable change in system behavior (e.g., a drastic decrease in boarding time). Second,

the model may also have numerous parameters that the airline has little or no influence over
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(passenger movement rate, passenger’s preferred interpersonal distance, number of children

on the flight, number of passengers that arrive late at the gate, time required to step aside for

another passenger by to get to their center or window seat, time required to place bags in an

overhead bin as a function of unused bin capacity, etc). While some of these parameters can

be estimated by field observations and historical data, there will inevitably be uncertainty

about some of these values.

When suggesting a policy decision on the basis of simulation results, it is important to

know how poorly that decision might fare as a result of incorrect estimates of these pa-

rameters. To achieve this, we might perform a worst-case multivariate sensitivity analysis

by searching for parameter settings (within the parameters’ feasible ranges) that yield the

slowest aircraft boarding scenarios. Another relevant task is model parameter calibration

or “tuning”. In particular, if a data set is available that provides information on how long

boarding times have historically taken, then it would be possible to search for parameter

settings that closely match the real-world data by attempting to minimize the error between

simulated and real results. This act of calibrating the model with empirical data can assist

in the process of model validation. Additionally, search can be used to test the model for

conceptual flaws or programmatic errors. For instance, when searching the parameters for

minimal boarding time scenarios, if the search method discovers parameter settings such that

a Boeing 747 can board all passengers in less than two minutes, either the simulation model

is faulty (possibly due to a programming bug), or one (or more) of the parameters being

considered is falling seriously outside the ranges that are feasible in the real world. This line

of thought opens up avenues for automated model testing via search. In short, searching a
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Figure 1.2. This is an example visualization of an agent-based model of aircraft
boarding, which is a reproduction of Figure 2 from Capelo et al. [2008]. In this
simulation each passenger is modeled as an individual agent that can interact
with other agents. This is in contrast to aggregate-based modeling techniques,
such as using differential equations to describe the rate passenger flow into the
cabin as a function of the number of passengers already seated.

model’s parameter space for extreme results can lead to the discovery of interesting infor-

mation about model behavior that can be useful in various phases of model development,

testing, and analysis.

Although I have only discussed a single example from the airline industry, agent-based

modeling is applicable to a wide variety of fields. A brief (and necessarily far from exhaustive)

alphabetic sampling from the literature includes examples of ABM in: anthropology [Axel-

rod & Hammond, 2003], archaeology [Axtell et al., 2002], bioterrorism [Carley et al., 2006],

business management [North & Macal, 2007], ecology [Grimm & Railsback, 2005], educa-

tion [Abrahamson, Blikstein, & Wilensky, 2007], marketing [Rand & Rust, 2011], materials

science [M. Anderson, Srolovitz, Grest, & Sahni, 1984], medical research [An & Wilensky,

2009], military tactics [Ilachinski, 2000], neuroscience [Wang et al., 2008], political science

[Epstein, 2002], social policy [Maroulis et al., 2010], sociology [Schelling, 1969], urban devel-

opment and land use [Brown, Page, Riolo, Zellner, & Rand, 2005], and zoology [Bryson et
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al., 2007]. In addition, agent-based modeling appears to be playing an increasing role in the

burgeoning cross-disciplinary field of “network science” (see, e.g., [Guimera, Uzzi, Spiro, &

Amaral, 2005; Holme & Newman, 2006]). In some of these fields, the models that are created

may emphasize exploring controllable model parameters for the sake of discovering policies

and making decisions, while in others the focus may tend toward model calibration, testing,

and verisimilitude with respect to real-world data. However, regardless of the discipline in

which the agent-based modeling is practiced, some form of automated parameter exploration

can benefit the process of understanding or analyzing these models.

1.4. Genetic Algorithms

Genetic algorithms [J. Holland, 1975] belong to a family of evolution-inspired algorithms,

such as evolutionary strategies [Rechenberg, 1973] and evolutionary programming [L. J. Fo-

gel, 1966], that have been invented (independently) in Europe and the United States. More

recent variations on evolutionary algorithms include genetic programming [Koza, 1992], dif-

ferential evolution [Storn & Price, 1997], and grammatical evolution [C. Ryan, Collins, &

Neill, 1998]. The rise of bioinformatics sometimes leads the uninitiated to believe that genetic

algorithms (GAs) involve the application of computer science algorithms to the decoding of

the DNA/genome of biological species. However, the situation is quite the opposite. In-

stead, genetic algorithms result from the application of principles of biological evolution to

computer science, to form a domain-independent problem solving technique. In other words,

genetic algorithms seek to “evolve” solutions to challenging problems by artificially mim-

icking the forces of variation and natural selection on a reproducing virtual population of

candidate solutions. Because of its generality and domain-independence, genetic algorithms

is described as a “meta-heuristic” search algorithm.
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Because genetic algorithms have proven successful on a wide range of nonlinear combina-

torial search/optimization problems, they form a natural choice for a search mechanism for

exploring the behavior of computer simulations (and agent-based models more specifically).

In fact, one of the earliest applications of genetic algorithms was in optimizing parameters

for a simulation of a living cell [Weinberg, 1970], and there have since been many various

applications of GAs to parameter optimization problems (e.g., [Grefenstette, 1986; Bäck &

Schwefel, 1993]). Additionally, previous studies by myself [Sondahl & Rand, 2007] and others

[Mitchell, Crutchfield, & Das, 1996; Packard, 1988] have demonstrated GA’s success when

evolving rules for cellular automata, which can be considered a restricted subclass of parame-

ter search in agent-based models. Several different researchers have either tried or suggested

the use of genetic or other evolutionary algorithms for ABM parameter search tasks [Capo-

rale, Serguieva, & Wu, 2009; Heppenstall, Evans, & Birkin, 2007; Narzisi, Mysore, & Mishra,

2006; Calvez & Hutzler, 2005], but the bulk of prior work has focused on answering specific

questions regarding a single specific agent-based model. Related work in this area will be

discussed in much greater detail in Chapter 2; however, in summary, this idea has received

scant systematic attention thus far.

1.5. Overview of Document Structure and Contributions

This thesis document is structured as follows. Chapter 2 provides the first comprehen-

sive literature review of research in this area, tying together themes from the exploration

and analysis of agent-based models to relevant work in the area of genetic algorithms and

metaheuristic search. Chapter 3 proposes a theoretical and methodological framework called

“Query-Based Model Exploration” (QBME), which provides the necessary structure for syn-

thesizing the various ideas and concepts that are demonstrated in the case studies that follow.
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The development of this comprehensive framework is, in itself, a contribution to the field.

Chapters 4-7 provide case studies that illustrate how and why genetic algorithms can be

an effective exploratory mechanism for the parameter-space of ABMs. Each of these case

studies is essentially written to stand on its own, providing sufficient background in both

the case study domain and the relevant ideas of evolutionary ABM exploration. Chapter 4

demonstrates the use of exploratory searches to discover the range of behavior produced by

models of collective animal movement (i.e. “flocking” behavior). Chapter 5 shows how ge-

netic algorithms can be used to explore a model of diffusion of innovation in social networks,

in order to a) find good strategies for viral marketing campaigns, and b) discover intriguing

differences between how real and abstract social network structures interact with this agent-

based model. Chapter 6 tackles the issue of model calibration and sensitivity analysis, using

genetic algorithms to search the parameter space of the well-known “Artificial Anasazi” sim-

ulation. Chapter 7 delves further into the question of how different calibration measures

may be more or less effective as fitness functions for driving the evolutionary search process,

in the specific context of matching a new agent-based model of consumer behavior in online

news browsing with a real-world dataset. Each of these case studies makes a contribution

to its specific domain area, as well as illustrating principles and general ideas about the

broader topic of using genetic algorithms for exploring agent-based models. Following the

case studies, Chapter 8 transitions into a more abstract/mathematical treatment of the prob-

lem of stochasticity in agent-based simulation, and how this “noise” affects the effectiveness

of search processes that use “fitness caching” to reduce redundant computation. This leads

naturally into Chapter 9, which provides a comparison of genetic algorithms performance

(vis-à-vis other search algorithms) on a variety of benchmark model analysis tasks, with and

without fitness caching, and with varying levels of repeated sampling (for noise reduction).
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This chapter’s contributions are at least two-fold: 1) the creation of a set of benchmark

model exploration tasks provides a valuable baseline for future research in this area, and 2)

this work provides the first comprehensive comparative study of genetic algorithms perfor-

mance for this type of task. It also provides a basis for evaluating the mathematical measures

of noise derived in Chapter 8. It is my belief that theoretical research should be grounded

in real-world problems, and conversely, that theoretical results should inform and enhance

the practice of the field. Accordingly, Chapter 10 discusses the design of a practical soft-

ware tool (BehaviorSearch) that I have developed and released in order to bring the QBME

methodology for model exploration and analysis (described in Chapter 3) within the reach

of the greater scientific modeling community. BehaviorSearch incorporates insights from my

theoretical research into the design of a low-threshold tool for the automated exploration of

agent-based model behavior, and it interfaces with NetLogo [Wilensky, 1999, 2001; Tisue &

Wilensky, 2004], which is a premier agent-based modeling language and integrated modeling

environment. Finally, Chapter 11 provides some closing remarks and shares several ideas for

future research that I believe will be fruitful, based on the perspective I have gained through

this experience.

This thesis centers around one underlying question: do genetic algorithms provide an

effective search technique for exploring the parameter spaces of agent-based models (ABMs)?

I claim the answer to this question is “yes”. However, to fully address this question, a simple

“yes” or “no” answer will not suffice; and thus I will dissect it into a series of more specific

questions:

• How can genetic algorithms be used to answer the type of questions that modelers

are concerned with?
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• What type of modeling analyses are amenable to this approach?

• What results have genetic algorithms found on real research modeling tasks?

• How effective are genetic algorithms relative to comparable techniques?

• What factors influence their efficacy, and how might they be improved to better

address the particular challenges posed by this problem domain?

Along the way, I will also justify why this research direction is worth pursuing, using a

combination of real-world modeling problems and classic/abstract models drawn from the

complex systems research community. In particular, I will argue for (and demonstrate) the

utility of integrating intelligent search/optimization techniques into the practice of agent-

based model exploration and analysis.
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CHAPTER 2

Literature Review

“We build too many walls and not enough bridges.”
– Isaac Newton

“A person who won’t read has no advantage over one who can’t
read.”

– Mark Twain

The question of how to explore and analyze the behavior of agent-based models (as well as

other types of computer simulation) is a broad one, and it has been approached from different

directions by different researchers. Sometimes there is a tendency in the various academic

disciplines to carry out research that is isolated from other disciplines, and publish in their

own field’s specialized journals and conferences. Whether conscious or not, this tendency can

result in creating walls between research carried out in one domain and another. However,

since agent-based modeling is an inherently cross-disciplinary methodology1 I will attempt

(through this literature review) to bridge some of the gaps between disparate communities

and offer a holistic survey of the relevant ideas in play. I will first discuss some of the

methods suggested for exploring models in general, before turning to search-based methods

in particular. This will be followed by a discussion of research from the genetic algorithms

literature that is appropriate to the agent-based model exploration problem domain.

1ABM is similar in this regard to fields like statistics, which cut across disciplinary boundaries. However,
unlike statistics, which is relatively mature, agent-based modeling is quite young and has (as yet) few
dedicated journals and conferences. Perhaps in the future, ABM research will become less fragmented.
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2.1. Overview of General Methods for Model Exploration

A first approach to exploring the parameter-space of agent-based models is through hu-

man interaction and/or supporting visualization tools. It is common practice for researchers

to experiment with different settings of their models, according to their intuitions. By using

knowledge and intuitions about the inner workings of the model, humans are often able

to more efficiently navigate the parameter-space than computer algorithms which treat the

model as a “black box”. Fehler et al. [2006; 2004] have suggested a methodology they

call “white box” calibration, in which humans use their knowledge of the model’s structure

to decompose the model into smaller units, thus effectively reducing the parameter-space

that must be considered. While “white box” approaches provide clear benefits, in many

cases model decomposition may be extremely hard or even impossible. Another possibil-

ity is to let humans view and process the results of evaluating points in the search space,

form their own mental models of the shape of the space, notice trends or search for points

(parameter-settings) of interest. The greatest challenge here is to help humans make sense

of the high-dimensional space by providing visualizations that humans can translate into

an understanding of model behavior. A full survey of this research is beyond the scope of

this paper; however, Horne and Meyer [2004] discuss some work on visualization tools and

exploration methodologies for ABM results, and others [Kornhauser, 2009; Kornhauser &

Wilensky, 2009] has been developing a novel interactive exploration tool and associated vi-

sualization techniques (see Figure 2.1). However, there are several persistent problems with

approaches that rely on human knowledge to guide the exploration process. Humans may be

biased (either consciously or unconsciously) when exploring the model’s behavior, humans

can easily make erroneous assumptions about the interaction of model parameters and their
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effects on overall model behavior, and bugs (either conceptual flaws or simple coding errors

that researchers are unaware of) may be present in the model. All of these factors can

lead humans to neglect the exploration of regions of the space that they expect to be un-

interesting, and therefore miss important findings. Additionally, manual model exploration

can be very time consuming and possibly tedious for humans, whereas algorithmic methods

can tirelessly explore the space and eventually report findings for a human to review. As a

general prescription, I believe that the best practice is to combine human-interactive explo-

ration with computer-automated methods: use human intelligence and intuition to explore

the model’s behavior, but also use unbiased2 algorithmic methods to find points of interest

that the humans might have missed.

A second (and more automated) approach to model exploration stems from the classic

“design of experiments” (DOE) literature [Fisher, 1971], which is concerned with how to

efficiently sample points in a space in order to understand the effects of factors in an exper-

iment. DOE has often been employed in agriculture to design experiments to test different

growing conditions. For example, suppose there are 10 different chemicals that could be

applied to the soil (10 factors), each with three different levels of potency (3 levels), giving

a total of 310 possible treatment combinations. Some examples of experimental designs in-

clude the factorial design (which tries all levels of all factors), the Latin hypercube design

(which guarantees a certain degree of representativeness while sparsely sampling the space

– see Figure 2.2), and the sphere-packing design (which attempts to efficiently cover the

space while sampling few points.) While these methods are potentially useful for designing

2Technically, all search methods apart from uniform random search are biased in some sense, as they make
implicit assumptions about the structure of the search space - for instance, that good solutions are more
likely to be found near other good solutions. However, computer search methods are arguably not biased
in the same way that humans are (this point will be revisited in Chapter 11), and certainly one would not
accuse a computer of having an externally motivated agenda when performing model exploration!
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Figure 2.1. Screenshot of a prototype version of Kornhauser and Wilensky’s
[2009] tool for visual (human-driven) exploration of ABM parameter spaces.

experiments for exploring agent-based models, Sanchez and Lucas [2002] point out several

drawbacks to applying classic DOE methods to agent-based simulation. For instance, classic

DOE methods often assume that interactions between factors are either linear or low-order

effects, which may not be true in ABMs. Also, DOE tends to choose all the points to eval-

uate ahead of time, whereas in computer simulations it is often possible (and desirable) to

choose new points to evaluate sequentially, using information gained from previous results.

Naturally, there is considerable interest and ongoing research in applying and extending

DOE methods to better handle computer simulation [Kleijnen, Sanchez, Lucas, & Cioppa,

2005], agent-based simulation in particular [Sanchez & Lucas, 2002], and also on “adaptive
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Figure 2.2. Latin Hypercube Sampling (example shown above for a two-
dimensional space) samples each parameter setting exactly once within each
dimension, as opposed to a factorial experiment design which would sample
all combinations of all parameter settings. If interactions between parameters
were linear, one might be able to extrapolate behavior across the parameter
space from this small sampling. However, ABM parameter spaces are often
fraught with complex nonlinear interactions.

designs” (alternatively called “sequential” or “dynamical” experimental designs) [Van Beers

& Kleijnen, 2008; Ankenman, Nelson, & Staum, 2008], including application to multi-agent

systems in particular [Klein, Bourjot, & Chevrier, 2005]. Recent work has also attempted

to use machine learning methods to create inverse mappings between model parameters and

measurable model outcomes, based on experiment data [Miner, 2010; Miner & desJardins,

2008]. Using techniques such as these, it is possible to create metamodels of the space

(linear, polynomial, kriging, or others), perform sensitivity analysis, or screen out which

model factors appear to be relatively unimportant. In the DOE approach to exploring the

parameter-space of agent-based models, the focus is usually to say something general about

the whole space. In contrast, the genetic algorithms approach discussed in this thesis will
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focus more on searching for specific points in the space in order to answer questions about

model behavior. However, the distinction between search techniques and adaptive experi-

mental designs can be fuzzy at times, as they sometimes seek to solve similar problems.

Finally, some simulations permit another form of exploration - through proof and analytic

methods. If the simulation rules are constrained to be of a particular form (e.g., certain

discrete event simulations), it may be possible to use logical inference methods to prove

patterns or constraints regarding model behavior without running the model repeatedly

with different parameter settings. However, this approach to exploration does not apply to

unconstrained agent-based models of complex systems that are written in Turing-complete

languages (such as NetLogo [Wilensky, 1999] or Java).

2.2. Search-Based Exploration of ABMs

Search methods provide another way of exploring the parameter space of an ABM. In

this context, the word “search” is closely tied to methods of “optimization”, since we may

design an objective function that expresses the characteristic behavior that we are searching

for. As mentioned in the aircraft boarding example in Section 1.3, it is possible to construct

objective functions that will search the parameter-space for various types of model behavior

or outcomes. However, it can be challenging to design an appropriate objective function

that both captures the desired model behavior and provides a good search gradient. One

contribution of this thesis is the development of a methodological framework to support the

design of objective functions for different model exploration and analysis tasks, which is

covered in Chapter 3.

Since the search problem is posed as an optimization problem (maximizing or minimizing

the objective function), I should note that there has naturally been considerable research
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attending to the optimization of computer simulations in general, partially because there is

considerable commercial incentive to finding optimal (and/or robust) configurations of sup-

ply chains [Shapiro, 2001], engineering design [Fox, 1971], financial market portfolios [Rock-

afellar & Uryasev, 2000], and other systems modeled in industry. Numerous optimization

techniques have been developed for both restricted and unrestricted problem domains, linear

and nonlinear, constrained and unconstrained, with discrete and continuous parameters, for

local and global optimization, etc., etc. The academic field of optimization is broad, diverse,

and somewhat fragmented. Nevertheless, it is worth mentioning several papers from the

simulation optimization research community that do not use evolutionary search, including

a review paper [Kleijnen & Wan, 2007] that discusses OptQUEST [Glover, Kelly, & Laguna,

1996], which is a notable commercial package that uses scatter search and tabu search in

conjunction with a neural network surrogate model for doing simulation optimization. Wake-

land et al. [2005] give an example of using both OptQUEST and a genetic algorithm for

doing verification and validation of a software process simulation model. There is also some

promising recent work on a new search technique (COMPASS) that provably converges to

local optima despite noise under certain conditions [L. J. Hong & Nelson, 2006]. Although

this field of literature deals more generally with the optimization of computer simulations,

and not specifically with the sub-genre of agent-based modeling, the methods and challenges

discussed are often relevant to ABM as well.

My thesis research focuses on genetic algorithms because they possess several character-

istics that are useful for this domain. First, genetic algorithms are a metaheuristic tech-

nique that is general enough to handle the mix of boolean, integer, discrete, continuous,

and categorical parameters that may be present in agent-based models. This rules out

gradient-descent-based methods (which require a differentiable function), as well as other
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techniques (including linear programming, quadratic programming, integer programming,

nonlinear programming, and others) that are tailored for all-numerical parameters or ex-

plicit numeric functions. Second, the objective functions are almost always stochastic and

may be non-convex3 and genetic algorithms have often proven effective at escaping local

optima in the search space [K. A. De Jong, 1975], as well as progressing towards a goal

despite noisy environments [Fitzpatrick & Grefenstette, 1988]. Third, the choice of genetic

algorithms is motivated by an intuition that the crossover operator will be able to take ad-

vantage of building blocks (in this case, subsets of the model parameters which work together

to elicit certain model behaviors), or partial solutions, to speed the search process.

Using evolution-inspired search methods to optimize computer simulation parameters is

not a new idea – in fact, evolutionary strategies were invented by Rechenberg in the 1960s

with engineering-related parameter optimization problems in mind [Rechenberg, 1973], and

genetic algorithms were proposed for the parameter optimization of complex systems by De

Jong [1980] as early as 1980. Moving beyond a focus on optimization, in the 1990s Bankes

[1994] proposed that evolution-inspired algorithms be used more broadly for exploring com-

puter simulations and Miller [1998] recommended their use for testing/calibrating/analyzing

system dynamics models.

Let us now shift the discussion to parameter search that is specifically in the context

of ABM, rather than computer simulation in general. As mentioned in the introduction,

most prior work on the use of genetic algorithms for searching the parameter-space of agent-

based models has focused on answering specific questions for specific agent-based models.

For example, Heppenstall et al. [2007] show that a GA can be an effective method for

3In “non-convex” functions, local extrema are not guaranteed to be global extrema. Non-convexity excludes
the use of a large class of efficient optimization algorithms, generally making the search task more difficult.
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calibrating parameter settings for an ABM of petrol retail markets. Similarly, Caporale et

al. [2009] use evolutionary programming4 to calibrate a model of contagion in multi-national

financial markets. Skolicki et al. [2008] employ a co-evolutionary algorithm to evolve both

terrorist and security scenarios. There have also been several recent examples of using multi-

objective genetic algorithms to search for parameters that provide good trade-offs between

several output metrics regarding the behavior of ABMs such as trading in financial markets

[Rogers, Tessin, & Eurobios, 2004] and emergency response planning [Narzisi et al., 2006].

In general, these projects focused on the specific application area, and not on providing

a broader perspective about how genetic or other evolutionary algorithms can be used for

ABM parameter search.

One exception to this trend is the recent work of Calvez and Hutzler [2005], which pro-

poses a framework for using genetic algorithms to tune the parameters of ABM. However,

even here, their framework was illustrated only by one realization of a genetic algorithm be-

ing applied to answer several questions about one particular agent-based model. Specifically,

they report preliminary results for one case study of using a GA to optimize different output

quantities on the NetLogo Ants Model [Wilensky, 1997a], which simulates an ant colony per-

forming pheromone-based food foraging. However, their case study involved the evolution

of just two parameters, they did not compare their results to a baseline measure, and nor

did they provide comparisons to any other search methods or different agent-based models.

Additionally, the conceptual framework they proposed leaves much room for improvement.

The example fitness (objective) functions they describe cover only a subset of the possible

4Evolutionary Programming (EP) is an optimization method developed by L. Fogel [1966] that is similar
to genetic algorithms although generally lacks the crossover operator. For an explanation of the (some-
times subtle) differences between genetic algorithms (GA), evolutionary strategies (ES), and evolutionary
programming (EP), please refer to this overview paper by Bäck [1993].
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use cases for model exploration, and they only begin to address the interaction between sim-

ulation stochasticity and search algorithm dynamics. They include examples of maximizing

the ant foraging efficiency, finding parameters that will yield three concurrent ant lines, and

calibrating the model to match predetermined data. In short, Calvez and Hutzler provided

a valuable preliminary foray into this research area, but both the framework and methods

prescribed deserve considerable expansion, as well as additional validation and support.

To expand on their work, I have developed a more complete/unified framework (elabo-

rated in Chapter 3 for both developing behavioral measures for ABMs and applying them as

fitness functions. The framework includes additional use cases such as model testing, sensi-

tivity analysis, identification of critical/leverage points, finding robust or volatile parameter

settings, and extreme scenario discovery. This work is partially inspired by John Miller’s

[1998] seminal work on “active nonlinear testing”, which proposed the use of nonlinear search

methods for a variety of useful tasks involving the testing and analysis of simulations. Specif-

ically, Miller used a genetic algorithm and a random-mutation hill-climber to search through

the parameter space of system dynamics models (SDMs), which model aggregate-level quan-

tities by numerically integrating differential equations over time. Because ABMs and SDMs

share several common features, some of these ideas will transfer directly. However, there

are differences as well, such as the micro-macro link, and the stochasticity of results that

are typical of ABMs, but not present in SDMs. Unfortunately, to date little work has been

done to extend or expand upon the ideas that Miller proposed. We remedy this primarily in

Chapter 3, as well as with additional considerations interspersed throughout the case studies

(Chapters 4 through 7).

In other related work, Brueckner and Parunak [2003] suggested a method of exploring

the parameter-spaces of ABMs by using an agent-based approach (one might consider it a
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meta-level ABM), coupled with a fitness function to measure how interesting each point in

the space was considered to be. In this scheme, which they call Adaptive Parameter Sweep

Environment (APSE), “Searcher” agents (using heuristics to move through the parameter

space) would allocate more trials in areas of higher fitness (provided they had not already

been extensively examined). This approach is also reminiscent of Particle Swarm Optimiza-

tion [Kennedy, Eberhart, et al., 1995] (with global attractive forces between agents based

on fitness). In this work, Brueckner and Parunak [2003] demonstrated that their APSE ap-

proach could successfully discover phase transitions in one example ABM of distributed graph

coloring, and that this approach was more efficient than a grid-based (factorial) simulation

experiment. However, they did not provide any comparison with other possible techniques

or metaheuristic search algorithms such as GAs.

Yahja and Carley [Yahja & Carley, 2006] have also approached the problem of model

exploration and validation, but their method uses a knowledge-based inference engine and

causal reasoning, in an attempt to emulate the causal reasoning that human scientists use.

Yahja and Carley argue for the superiority of this method over genetic algorithms, but

they did not perform any objective comparisons. While it may be tempting to assume

that knowledge-level reasoning mechanisms will offer improvements over an evolutionary

approach, this is not necessarily the case. It is worth considering that in nature, the “blind

watchmaker” has designed many creative and powerful solutions to challenging problems that

have, as yet, escaped the ingenuity of human engineers. Regardless of this quasi-philosophical

debate, until the capabilities of genetic algorithms have been more fully investigated, they

should not be discounted as an effective problem-solving method in this domain.

The list of related work would be incomplete without mentioning the SADDE method-

ology [Sierra, Sabater, Augusti, & Garcia, 2004], in which a modeler starts with an EBM
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(Equation-Based Model – for literature comparing ABM and EBM, see [Parunak, Savit, &

Riolo, 1998; Wilensky & Reisman, 2006, 1998]) describing aggregate-level patterns of the

system, and then designs an ABM to match the EBM, using evolutionary algorithms for

the calibration of ABM parameters. Sierra et al. [2004] demonstrate the SADDE method-

ology using a case study of the U.S. electricity market. They first develop equations to

characterize aggregate-level behavior of the market, and subsequently build an agent-based

model of the market. Using genetic algorithms to tune several parameters that affect the

behavior of producer and consumer agents in the ABM, they were able to find parameter

settings that fulfilled the macro-level requirements, as specified by their EBM. This example

again suggests that genetic algorithms may be a useful tool for this type of parameter search

task, but this is merely a single data point, and no comparisons were made with alternative

techniques.

As an additional side note, there are many other ways that evolutionary algorithms can

be combined with agent-based modeling, in addition to searching parameter spaces. In fact,

evolutionary algorithms can themselves be conceived of as a multi-agent system. For exam-

ple, Socha and Kisiel-Dorohinicki [2002] propose a new multi-object evolutionary algorithm

using an agent-based design approach, and Stonedahl and Rand [2008b] propose an agent-

based model of the diffusion of innovation across social networks, which may equivalently be

understood as a distributed genetic algorithm with a restrictive breeding network. Alterna-

tively, the rules by which individual agents act can also be evolved by genetic programming,

either before or during the model runs (e.g., [Panait & Luke, 2004]). Also, each individual

agent can simulate human decision-making or intelligence by using a genetic algorithm as

a mechanism for choosing good strategies (e.g., [Rand & Sondahl, 2004]). I mention these
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other possibilities only to distinguish them from the form of ABM/GA integration that my

research will focus on, which is parameter-space exploration.

2.3. Related Genetic Algorithm Research

In this section, I will discuss literature regarding genetic algorithms and/or metaheuristic

search, and with regard to various challenges that are characteristic of ABM exploration

problem domain, even if they are not fully specific to it.

These challenges include the slowness of fitness evaluation, the noise in the fitness function

created by model stochasticity, and the issues of chromosomal representation when mixing

continuous and discrete parameters.

2.3.1. Noisy fitness functions

One of the challenges posed by searching the parameter-space of agent-based models is the

stochastic nature of the simulation. The use of randomness is such a prevalent feature in

ABM that NetLogo’s agent scheduling is randomized by default and special measures must

be taken to cause the agents to always take action in the same order. Randomness commonly

plays many other roles in an ABM as well: breaking ties when choosing between alternatives,

allowing agents to act based on probabilities. This stochasticity is often a beneficial trait

from a modeler’s perspective, since it makes the model more robust against fluke events

and accidentally biased results. Even if we presume that the phenomena being modeled

does not involve any “truly” random processes, the use of numbers drawn from random

distributions can serve to represent any source of variance in the system that is not being

explicitly modeled. For instance, in Schelling’s [1969] classic model of spatial segregation

in residential areas (see also the NetLogo version of this model, [Wilensky, 1997d]), when
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agents are “unhappy” with their current location, they use randomness to select a new place

of residence. Obviously, the real reasons people choose a house are far from random: they

may wish to be close to their work, in a good school district, near a park/library, or aspects

of the house itself (fireplace, patio, etc) may appeal to them. However, rather than trying

to explicitly model heterogeneous agent preferences, many of which are unobservable, for a

multitude of criteria along myriad dimensions, the choice of relocation can be simplified to

a single decision made randomly. The randomness represents our lack of specific knowledge,

and abstracts away many details that are unnecessary to the larger point that Schelling

sought to make (i.e. that even “weak” prejudice among individuals can lead to strong

“segregation” at the population level).

However, from a search-based perspective, the use of randomness means that even when a

model is run with precisely the same set of parameters, different results will occur each time,

as a result of different initial seeds for the pseudorandom number generator. A common

approach is to treat each model run as a signal with some amount of noise, and to run

the model for a fixed number of trials and take the mean (or perhaps median) value of the

results. There are two potential issues with this.

• If you are searching the parameter space for a particular objective function, and you

have limited computational resources, it is preferable to distribute trials based on

how promising the individual (or perhaps the region of the parameter space) is. For

instance, if after 10 trials, the fitness of an individual is significantly less than the

fitness of other individuals in the population, does it still make sense to run another

20 trials on that same individual, in order to improve the statistical significance of

the estimate?
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• The noise in the output of an agent-based model often means something. It may be a

measure of the predictability or robustness of the current parameters. Furthermore,

consider that there may be two attractors in the phase space of the system. If the

output measure is 0 half the time, and 100 half the time, it may be misleading to

condense this to a mean value of 50.

The former point will be discussed in more detail in Chapter 8, and the latter in Chapter 3.

There has been considerable prior research about genetic algorithms in the presence of

noise and uncertainty; Jin and Branke [2005] provide a good survey of this area. Also,

Jaskowski and Kotlowski [2008] recently offered several approaches for statistically selecting

the best individual among the members of the final generation of the GA, when the fitness

function is noisy. More specifically, in the context of calibrating parameters of ABM Calvez

and Hutzler [2005] considered the problem of noise, and offered a rough guideline that prac-

titioners should first try running many replications at one point to estimate the “error rate”

as a function of the number of replications, to get an idea of how many replications should be

run to get an error rate of less than, e.g., 5 percent. However, this approach makes an implicit

assumption that the error rate is constant throughout the parameter space, and they do not

relate how the estimated error rate actually affects the progress of the genetic algorithm

towards an optimal solution. Furthermore, they recommend a novel approach of running

only a single replication in most generations but running many replications every Nth gen-

eration, to get a better estimate of actual fitness. However, they offer neither theoretical nor

empirical evidence that this novel approach is superior to more traditional techniques; the

issue of controlling the variation of fitness function noise in a generation-dependent manner

like this deserves further investigation. In short, the interplay between the stochasticity of
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ABM simulations and the genetic algorithm’s ability to search noisy fitness landscapes is not

fully understood. Without a deeper understanding and improved methodology, practitioners

may choose methods of dealing with noise that are simplistic, ad hoc, and inefficient.

2.3.2. Computational cost

Another challenge for applying genetic algorithms to agent-based model exploration is the

typical slowness of fitness evaluation. Agent-based models are often computationally de-

manding, with thousands of agents interacting over many thousands of model “ticks” (units

of simulated time). If the model takes a long time to run and allotted search-time is con-

strained, then sacrifices must be made which will affect the genetic algorithms performance:

either the GA population must consist of fewer individuals, the number of generations that

the GA is allowed to run must be reduced, or the individuals must be evaluated less frequently

or less extensively. Too small a population will be unable to support sufficient diversity dur-

ing the search process, and result in considerable “inbreeding”, which is likely to prevent

any positive effects of crossover. On the other hand, running for too few generations will not

allow the GA to converge on a good solution. As has just been discussed in Section 2.3.1,

one way to evaluate individuals less extensively is by taking the average of fewer model runs,

which constitutes a trade-off between signal noise and computational effort. There is some

evidence that the performance of the genetic algorithm on noisy problems can be improved

by decreasing the amount of sampling of individuals, while instead increasing the population

size [Fitzpatrick & Grefenstette, 1988].

There are a number of additional approaches that attempt to reducing computational

time for fitness functions that are slow to evaluate, including using parallel or distributed

genetic algorithms, fitness approximation, fitness inheritance, and fitness caching. While
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parallel genetic algorithms, surveyed in [Cantu-Paz, 1998], are undoubtedly useful, and will

become increasingly so as the world shifts toward more parallel computing architectures,

in some sense these approaches are sidestepping the issue problem by applying more hard-

ware. Fitness approximation, surveyed in [Jin, 2005], involves the use of a surrogate fitness

function which is cheaper to evaluate than the real fitness function, but provides only ap-

proximate results. The genetic algorithm then uses the surrogate fitness function some of

the time, and the real fitness function some of the time. This is a promising direction, al-

though automatically finding a surrogate function that gives a good approximation to the

result of the complex nonlinear processes that take place in an agent-based model may be

prohibitively challenging. (Although surrogate fitness functions fall outside the scope of the

present work, some of the analysis of ABM fitness landscapes in Chapter 9 may offer clues

about the feasibility of this approach moving forward.) In fitness inheritance [R. Smith,

Dike, & Stegmann, 1995], individuals in the population sometimes inherit fitness values by

averaging the values of their parents, rather than evaluating the real fitness function. This is

based on the premise that children will tend to have fitness values that are highly correlated

with their parents fitness, and so we may be able to approximate directly from their parents

(some fraction of the time) without actually evaluating them. However, initial studies using

fitness inheritance were performed using simplistic fitness functions, and there is concern

that the approach does not scale well to non-convex functions found in real-world prob-

lems [Ducheyne, De Baets, & De Wulf, 2003]. On the other hand, fitness caching [Kratica,

1999] is a straightforward approach that involves the memoization of the fitness function,

so that future evaluations at the same location in the parameter space will not have to run

the ABM again. The more that individuals are likely to recur during the search, the more

savings will result from caching. However, previous cases of fitness caching [Kratica, 1999;
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Kratica, Tosic, Filipovic, Ljubic, et al., 2001] did not consider the interplay between caching

and noisy fitness functions, which may negate the result mentioned above [Fitzpatrick &

Grefenstette, 1988] that increased population sizes are often more beneficial than increased

sampling. As part of this thesis work, I provide both analytic and empirical investigations

of fitness caching in the presence of noise, found in Chapters 8 and 9. Besides attempting

to eliminate the computational cost of re-running ABMs at the same settings, there may be

value in recording all fitness evaluations made during the progress of the genetic algorithm,

either to use this information to more intelligently guide the search process or to post-process

this data to discover other interesting features of the parameter space.

2.3.3. Chromosomal representations

As demonstrated by the Ethnocentrism model [Axelrod & Hammond, 2003; Wilensky &

Rand, 2003] introduced in Chapter 1 (see Figure 1.1), as well as a recent linguistic model

about how language change may diffuse in a social network (see Figure 2.3), agent-based

models may contain a variety of parameter types, including boolean parameter, integer-

valued parameters, discrete numeric parameters, continuous numeric parameters, categorical

parameters, strings of text, and potentially even more unusual types such as lists, matrices,

colors, or bitmap images. In section 2.2, I mentioned that this was one of the motivations for

using genetic algorithms, since they are a flexible enough search technique to handle these

different representations. Unfortunately, there is scarce literature studying tradeoffs and

appropriate choices of GA chromosomal representation when dealing with mixed data types.

Although Holland’s original discussion of genetic algorithms [1975] mentioned the possibility

of using non-binary alphabets, the majority of early GA research focused on binary strings.

After all, on a digital computer, any data type can always be encoded as a sequence of bits.
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Figure 2.3. Top left: A visualization from the Diffusion of Language NetL-
ogo model, which investigates language change occurring in a social network
context. Top right: A plot of average population-level grammar preferences
versus time (demonstrating complex dynamics). Bottom: The 18 controlling
parameters of this model: 8 categorical, 4 integer-valued, 5 real-valued, and 1
boolean.

On the other hand, the independently conceived evolutionary strategies [Rechenberg, 1973]

used only real-coded genes from the start. The first implementation of real-coded genes in

the “Michigan school” of genetic algorithms was in Weinberg’s 1970 thesis. In time, the

field of real-coded genetic algorithms blossomed and there has been much more work in

this area than can be overviewed in this document. Some debate around these two gene

representations arose, as well as attempts to understand their strengths and weaknesses,
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and resolve the theoretical differences between them [D. E. Goldberg, 1991]. Additionally,

there is continued debate on the topic of crossover on real-coded genomes, as naive averaging

approaches proved to be inadequate in many cases. Various mechanisms have been proposed,

including attempts to apply insights from binary-coded crossover [Deb & Agrawal, 1995], as

well as recent work on “parent-centric” crossover [Ballester & Carter, 2004a] which in some

sense functions as a self-adaptive mutation rate, based on the spread of the population in

the space.

Despite the volume of discussion about real and binary representations, as noted above,

there seems to be very little literature regarding the appropriate use of mixed representa-

tions (though a hybrid approach was employed recently with reasonable results [Gantovnik,

Anderson-Cook, Gürdal, & Watson, 2003]). Although this topic is not a particular focus

of this dissertation, throughout this work I have used a variety of binary, real-valued, and

mixed representations. Anecdotally, I did not find a strong trend regarding which chromo-

somal representation might be superior for this domain, as the genetic algorithm appeared

to work well with several representations. However, there are many open and intriguing

questions, including: when is it preferable to convert parameters into binary format as op-

posed to letting them remain numeric? how should crossover be performed in a mixed-coding

representation? and how can mutation-rates be appropriately calibrated across the mixed-

representation genome? I feel that a more rigorous treatment of these questions would make

a good topic for further research (possibly even another thesis) in this area. Answering these

questions would be useful in the particular domain of ABM exploration, but perhaps also

offer insight into the use of mixed genome representations in general. Lacking definitive

answers from the literature, I find the mixed representation to be most natural, as this most
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closely preserves the genotype-phenotype mapping, and this was the representation used for

the benchmark comparison performed in Chapter 9.

2.3.4. Exploration versus optimization

Considerable research has focused on genetic algorithms as function optimizers, seeking in-

put values that will achieve the single best global maxima or minima (for a given objective

or fitness function) [Ashlock, 2006]. However, as has been argued by De Jong [1993], genetic

algorithms were designed not as function optimizers, but rather as a mechanism inspired

by real evolution, which engages in an adaptive exploration process of a complex and time-

varying landscape. This observation provides further support for the choice of genetic algo-

rithms, as similarly the goal may in part be exploration of the parameter space, rather than

finding a single optimal point. While modelers may be interested in global minimization or

maximization, this is not the extent of their curiosity. For example, knowing the point of the

parameter space that produces the least smog in model of air pollution is useful, but in some

cases identifying multiple regions of low smog is arguably more beneficial. Thus diversity

maintenance in the genetic algorithm’s population may be a more important consideration

than convergence to a global optima in the search-algorithm. More generally, it is worth

emphasizing that exploration does not equal optimization, though the two tasks are related,

and often have substantial overlap.

Some work which bears more toward exploration, is the recently proposed “scouting al-

gorithm” [Pfaffmann & Zauner, 2001], which is essentially an evolutionary algorithm hunting

for “surprises”, or points in the search space that give a value considerably different from

what is expected, given the values at nearby neighboring locations in the space. It has also

been proposed that the idea of “scouting” can be integrated with an evolutionary algorithm
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that is searching for some objective function, as a means of avoiding premature convergence

on local optima [Pfaffmann, Bousmalis, & Colombano, 2004; Bousmalis, Hayes, & Pfaffmann,

2007]. Another interesting approach to encourage exploration in the space is the use of co-

evolution, inspired partially by the “estimation-exploration” algorithm proposed by Bongard

and Lipson [2005]. In their algorithm, however, the goal is to identify a system that would

produce the same results as some unknown system, which can be probed at great expense.

However, a similar coevolutionary approach could employ a population of metamodels that

are attempting to estimate the fitness space, and award individuals that give results that

were poorly predicted by the metamodels, thus indicating a region of potential interest.

2.3.5. Searching for a cheap lunch

Another broad consideration which must be addressed is whether the central thesis prob-

lem is well-posed. In particular, this thesis is about demonstrating the efficacy of genetic

algorithms for the exploration of agent-based model parameter-spaces. Part of this process

involves demonstrating that genetic algorithms are more effective for this than other search

techniques. However, the space of all possible agent-based models covers much territory, and

as agent-based models can be very different from each other, the shape of their parameter-

spaces may also vary greatly. Is it, therefore, reasonable to assert that some search algorithm

is better than any other for this large class of problems? This objection stems from the aptly

(and entertainingly) named “No Free Lunch theorem” [Wolpert & Macready, 1997], which

in paraphrase, states that over the class of all possible functions, no search technique will

outperform any other, and in particular none will perform better than a random search. Of

course, no one is ever trying to search the space of “all possible functions”, so this theorem’s

pragmatic application is limited; real world problems come in various shapes and sizes, but
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their search spaces often contain regularities and continuities that distinguish them from an

arbitrary randomly-chosen function. However, there have been further arguments made that

there is still “no free lunch” even for more restricted classes of functions with features that

are similar to some real-world problem domains [Droste, Jansen, & Wegener, 2002].

I have several responses to these concerns. First, the philosophical/hypothetical objec-

tions are not very constructive; from a practical standpoint, there is an important need

for tools to explore behavior in agent-based models, and in order to build such tools, some

search algorithm (or ensemble of search algorithms) must be chosen. There is a tendency

for people to over-interpret the No Free Lunch theorem as being more damaging to meta-

heuristic search research than it is in practice; in some situations the NFL theorem can

help prove the general superiority of one search technique over another. For example, in an

ironic twist, Whitley [1999] applied the NFL theorem to show how one form of search-space

encoding (gray encoding) could in fact be provably superior to another for most real-world

problems. Second, I should clarify that we do not expect one single search algorithm (genetic

or otherwise) to be the most efficient mechanism for exploring every conceivable agent-based

model. However, it may be that some single method does work quite well for exploring most

agent-based models. Third, despite the many differences between agent-based models, there

are a number of features that most agent-based models share, and some search algorithms

will certainly be better suited to these features than others. For instance, the stochasticity

of model runs results in noise in the objective function, and some search methods handle

noise more effectively than others. In fact, as we will show in Chapter 9, genetic algorithms

prove to be broadly effective for parameter exploration on a representative set of models and

exploratory tasks (see Chapter 9).
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The No Free Lunch theorem provides a cautionary warning to search and optimization

researchers, that one should not expend fruitless energy seeking the single silver bullet or

holy grail that will solve every problem. However, it does not diminish the importance of

seeking effective search algorithms for reasonably broad categories of real-world problems,

nor is it a serious impediment to showing that genetic algorithms can be highly effective for

ABM exploration tasks, which is a goal of this thesis.

2.4. Tools for Automated ABM Search and Exploration

This section will attempt to detail past research, and the present state of the art, with

regards to tools for ABM parameter-space exploration. In recent years there has been con-

siderable growth in the area of toolkits and libraries that support the creation of agent-based

models, but considerably less emphasis on supporting exploration and analysis of those mod-

els [N. Gilbert & Bankes, 2002; S. C. Bankes, 2002]. As mentioned in section 2.1, there has

been some recent work on visualization and interactive exploration tools [Kornhauser, 2009;

Horne & Meyer, 2004]. However, I will restrict my attention here to search-based exploration,

as that is most directly relevant.

A recent survey of extant agent-based modeling toolkits [Railsback, Lytinen, & Jackson,

2006] reviewed four major toolkits suitable for research modeling: Swarm [Minar, Burkhart,

Langton, & Askenazi, 1996], MASON [Luke, Cioffi-Revilla, Panait, & Sullivan, 2004], Repast

[North, Howe, Collier, & Vos, 2005; Collier & Sallach, 2001], and NetLogo [Wilensky, 1999;

Tisue & Wilensky, 2004]. Swarm models may be written in either Java or Objective-C, and

modelers wishing to perform parameter search could write their own routines from scratch

in one of these languages. MASON models are written in Java, and MASON was designed

to integrate with ECJ [Luke, 2000], an evolutionary computation library written in Java
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by one of the authors of MASON. Similarly, Repast S includes a partial framework for

parameter optimization, which users can extend Java classes and interfaces to create their

own algorithms of moving through the search space. Implementations of hill climbing and

simulated annealing are provided, but there is no built-in support for genetic algorithms5.

Of these ABM toolkits, NetLogo is the only toolkit that has its own multi-agent language

and integrated modeling environment. NetLogo also provides a Java controlling API, so

that users could write their own programs for doing exploration, as well as an interface that

allows NetLogo to be controlled by Mathematica, which has several built-in optimization

algorithms. However, the current available methods for parameter search generally require

substantial computer programming and demand a fluency with code libraries or in some

cases writing algorithms from scratch. They are largely inaccessible to modelers who are

not advanced programmers, and even for advanced programmers, they do not provide any

built-in scaffolding of the most common tasks (e.g., searching for a large mean value across

some number of replicate runs). Nor is there straightforward support for using parameter

search to perform more complex search tasks such as model calibration, sensitivity analysis,

volatility or robustness testing, or phase transition discovery.

MASS (Multi-Agent Simulation Suite) [Iványi, Bocsi, Gulyás, Kozma, & Legendi, 2007]

is a relatively recent addition to the ABM toolkit world. It contains a formal (though some-

what constrained) modeling language (FABLE), but it also includes a model exploration

module (MEME) [Iványi, Gulyás, Bocsi, Szemes, & Mészáros, 2007] which is capable of in-

terfacing with models written in Repast, NetLogo, or plain Java, as well as FABLE models.

5Repast S does include a genetic algorithms library as part of the distribution, but it is configured for
evolving agents (or agent-level properties), and not for model parameter-search.
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MEME is the most similar tool to BehaviorSearch that is currently available. It provides flex-

ible support for several different experimental designs (such as Latin Hypercube Sampling),

and is currently moving toward support for more dynamic or adaptive search algorithms for

experimentation with model parameters. For the past few releases, MEME has included an

option that mentions John Miller’s ANT (active non-linear testing) functionality, and a very

recent build of the MEME software added a plugin for genetic algorithms. Neither of these

features is documented, and they appear to be relatively experimental at this point.However,

this is clearly a direction that this tool is moving towards in the future, and MEME should

provide a second tool (besides BehaviorSearch) that will support aspects of the query-based

model exploration framework discussed in Chapter 3. There are several important differ-

ences between MEME and BehaviorSearch. At present BehaviorSearch only interfaces with

the NetLogo modeling toolkit, whereas MEME is designed to support models written with

a variety of toolkits. However, as discussed further in Chapter 10, BehaviorSearch (like Net-

Logo) has an explicit goal of being low-threshold – that is, being easy for novice modelers to

use and get started with, and its simple/straightforward integration with NetLogo supports

that goal. (BehaviorSearch also provides a host of features useful to support advanced users,

as detailed in Chapter 10).

In addition to these five well-known toolkits discussed above, there many alternatives.

Nikolai and Madey [2009] provide a fairly exhaustive list of extant agent-based modeling

libraries and tools (53 in total), though the strength of their survey is breadth rather than

depth. I will only discuss a few other tools/projects which seem particularly relevant.

• The SeSAm environment [Klügl, Herrler, & Fehler, 2006] also provides tools for

visual modeling and experimenting with agent-based simulation. While the project
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website makes a reference to support for searching for parameters that maximize

some objective function, I was unable to discover any such facilities, either in the

software’s user interface or documentation. This appears to be a work that is still

in progress.

• Pfaffmann and Jenkins [2008] expressed the intention to begin designing tools and/or

techniques to automate experimentation with agent-based models, using some form

of evolutionary search techniques (such as scouting [Pfaffmann et al., 2004]), but

this project does not appear to have produced any publicly-available tools thus far,

and the status of the project is currently unknown.

• Yahja and Carley [Yahja & Carley, 2006] have been developing WIZER, a “what-

if analyzer” for the purpose of exploring and/or validating very large social agent

simulations (specifically, the BioWar [Carley et al., 2006] simulation of bioterrorism

attacks). As was mentioned in Section 2.2, this tool employs a logic-based inference

and causal reasoning engine (not genetic algorithms) to navigate through the model’s

parameter space. While they propose their methodology as a general approach, the

WIZER software is currently designed to work specifically with the BioWar model

and would require considerable modification to transition it into a generic software

tool that is applicable to typical agent-based models. Furthermore, the emphasis

of their work is on designing a system that can perform experiments and reason

independently, rather than providing a tool for modelers to use to explore their own

models.

In conclusion, there is currently an unfilled need for a low-threshold tool for performing

parameter search for agent-based model exploration.
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CHAPTER 3

Query-Based Model Exploration: A Theoretical Framework

“Science is what we understand well enough to explain to a com-
puter. Art is everything else we do.”

– Donald Knuth

“The purpose of models is not to fit the data but to sharpen the
questions.”

– Samuel Karlin

By Knuth’s definition (and arguably many others), the process of developing agent-

based models is currently more of an art than a science. While the artifacts of the process

(constructed models) are specified at a level of specificity that a computer can understand and

execute, the act of modeling is a complex product of human ingenuity. I believe this state of

affairs will remain largely the case until the advent of significant breakthroughs in artificial

intelligence. However, this does not mean that certain aspects of the modeling process

cannot become more scientific, or even automated by computers. This chapter introduces

a theoretical framework for exploring agent-based model behavior using evolutionary search

algorithms. In doing so, it is my goal to contribute toward the science of agent-based model

analysis.

The description of the Query-Based Model Exploration (QBME) framework provided in

this chapter in split into four major sections:
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• The first section (Section 3.1) formalizes the concept of the behavior of an ABM in

terms of the data it produces.

• The second section (Section 3.2) focuses on the formulation of measures of agent-

based model behavior.

• The third section (Section 3.3) focuses on ways that these measures can be applied

to accomplish a variety of important model analysis tasks.

• The fourth section (Section 3.4) discusses genetic algorithms, and how behavioral

measures are used as fitness functions in the search process.

The QBME framework hinges on a paradigm shift in how people explore and analyze agent-

based models. I will briefly explain this paradigm shift, and then go on to discuss the two

organizing principles that the framework is built around – levels of analysis and diversity.

Parameters and Paradigms

When you run an agent-based model, you are implicitly asking (and answering) the question:

what is the behavior of the model given parameter settings (p1, p2, p3, ...). As we’ll discuss

more below, you may have to run the model multiple times with these parameter settings

to get a good idea of what the model’s behavior is, but this is the general paradigm. I

would like to encourage a paradigm shift for model analysis, which essentially inverts the

question. Instead of asking “what behavior will I get with a certain set of parameters?”,

what if instead we were asking questions of the form “what parameter settings will give me

a certain behavior?” More formally, if we are interested in some behavior B, then what

settings of the parameters (p1, p2, p3, ...) will result in the greatest expression of B. The

difference in model exploration workflow for these paradigms is shown in Figure 3.1. While
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Set Parameters

Traditional Workflow QBME Workflow

Run Model 
(several times with
 these parameters)

Observe Behavior

Choose Behavior

Quantify Behavior

Examine Parameters
(that most strongly 
elicit the behavior)

Run Model
(repeatedly with 

varying parameters)

Figure 3.1. Flowchart highlighting the difference between the QBME paradigm
and the traditional paradigm for model exploration.

the idea of shifting perspective in this way is very simple, the new paradigm requires the

elucidation of several steps of this process.

(1) How can we quantify an interesting model behavior in a way such that we can search

for parameters that yield it? (Discussed all throughout Sections 3.2 and 3.3.)

(2) How can we efficiently and effectively search the parameter space for a given behav-

ior? (Discussed in Sections 3.4.1 to 3.4.4 .)

(3) How should we interpret the parameters that are returned by the search process?

(Discussed especially in Sections 3.4.5 and 3.4.6.)

This chapter will address these questions while elaborating the QBME framework, and the

following chapters will address them more concretely in the context of case studies.
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We move next to a brief introduction of the framework’s organizing principles (levels of

analysis and diversity), although these themes will be revisited continually throughout this

chapter.

Thinking in levels

In the context of learning about and understanding complex systems and multi-agent models

of those complex systems, the importance of thinking about levels of complexity has been

well-established by a bulwark of research in the cognitive and learning sciences [Wilensky

& Resnick, 1999; Penner, 2000; Raia, 2005; Chi, 2005; Jacobson & Wilensky, 2006; Sabelli,

2006; Goldstone & Wilensky, 2008; Levy & Wilensky, 2008b]. The importance of levels has

also been recognized by complex systems and ABM methodologists [Bar-Yam, 1997; Parunak

et al., 1998; Epstein, 1999; Wilensky & Rand, in press], as well as dissected and discussed

by various philosophers of science1 [Simon, 1973; Wimsatt et al., 1994]. In most cases, the

focus of this work has been on two levels of analysis: the agent (or individual) level, and the

aggregate (or population) level. These two levels are at the heart of understanding complex

systems because the agent-based model demonstrates how aggregate-level behavior emerges

from the interaction of individuals. However, in order to provide a framework for creating

behavioral measures of agent-based models, we must consider levels of analysis that are

both below (i.e. intra-agent) and above (e.g., comparing multiple simulation trials) these

standard levels2. The QBME framework also must take the temporal aspects of agent-based

1For example, the philosophical subfield called “mereology” is dedicated to the formal study of the logical
properties of the relation of part and whole. However, whether the existing literature in mereology can
substantially contribute to our understanding of emergence in complex systems remains in doubt.
2Not all of these “levels” will necessarily meet the definition of “emergent levels” as set out in [Wilensky &
Resnick, 1999] – although phenomena and patterns at a higher level often emerge from interactions at a lower
level, in some cases I will use the word “level” to denote simple containment relationships, or hierarchical
levels.
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simulation into account, in order to characterize model behavior over time, which defines a

“temporal level” of analysis (if we allow the word “level” to be broadly construed). When

unpacking the levels of analysis that are required for the exploration of the parameter spaces

of agent-based models, we will begin at the most basic level (that of a single agent), and

work our way up to the highest level (diversity of results among different search methods).

Diversity in complex systems

Diversity is the second organizing principle for this framework. In recent years, there has

been an increased interest in studying the effects of diversity in complex systems [S. Page,

2010; S. E. Page, 2008; L. Hong & Page, 2004; Eagle, Macy, & Claxton, 2010; Santos, Santos,

& Pacheco, 2008]. In most cases, these studies focus on diversity at the individual level –

to what extent do agents in a population differ from one another, and what effect does this

variation have on system-level behavior or performance outcomes? However, in the context of

this framework, I will interpret the term diversity inclusively, to refer to any form of variation

(or difference) at any level. Thus construed, diversity is a broad but powerful theme, and

methods of quantifying diversity can by applied at each of the levels of analysis discussed in

this framework, resulting in a rich collection of behavioral measures. Depending on the level

of application, these measures can capture concepts of homogeneity versus heterogeneity,

similarity versus difference, constancy versus change, predictability versus unpredictability,

and sensitivity versus robustness. We will find below that diversity is not a general enough

concept to capture all behavioral measures that we might be interested in, but it does give

us considerable purchase as an organizing principle for this framework.
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3.1. Formalizing ABM Behavior

Before discussing various types of behavioral measures, it will be helpful to unpack what

is meant by ABM behavior, and introduce some formal notation to increase the rigor of

the discussion that follows. An agent-based model is fully specified, in some sense3, by the

computer program which is to be executed, along with a conceptual correspondence (which

may be loose) between entities in the model and entities in the target phenomena being

modeled. However, it is only through running the agent-based model that we can discover

the model’s behavior - not through static inspection of the model’s source code. In the general

case, an agent-based model is a computer program written in a Turing-complete language,

and may implement algorithms of arbitrary complexity. Thus, from a theoretical perspective,

halting problem style arguments apply, proving that behavior cannot be determined without

running the code. From a more empirical perspective, individual agent rules are often fairly

simple algorithms, but the aggregate patterns resulting from them are quite complex, and

in practice even advanced modelers tend to have considerable difficulty predicting emergent

model behavior. While methods might be developed in the future that can characterize

model behavior without model execution, especially for limited subclasses of models, I am

not optimistic about this general approach. In any case, at present, model behavior is best

characterized by the output of executing the model (simulation).

In addition to the source code, an agent-based model has some associated set of input

parameters designated by the model author as variables of interest. We are specifically

interested in formalizing the following: what is the behavior of the model for a given choice

3One might insist that to fully specify the model, one would also need a complete specification of the
interpreter/compiler for the language the model is written in, as well as the computer hardware which runs
it, etc. But this line of thought eventually leads to philosophical considerations which are beyond the scope
of this thesis...
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of parameters settings p in the space P of all possible parameter settings. A specific p

represents bindings (p1, p2, p3, ...) for each parameter of the model. As an illustrative example,

to make the formal notation we are building more accessible, let us consider the Wolf Sheep

Predation model [Wilensky, 1997e], which is a fairly simple ABM of predator-prey dynamics

in a closed ecosystem. (Although this is an abstract model, it bears a striking resemblance

to real-world predator-prey relationships, such as those recorded between wolves and moose

that on the relatively closed ecosystem of Isle Royale, in Michigan, U.S.A. [Peterson, 1999].)

The model’s interface, including the model parameters exposed by the author, is shown in

Figure 3.2. In this case, p1 would correspond to the show-energy? parameter, p2 to the grass?

parameter, p3 to the grass-regrowth-rate parameter, p4 to the initial-number-sheep parameter,

and so on. (Actually, one of these parameters (show-energy?) only affects the visualization of

the model, and does not change the model behavior; although varying visualization options

can be crucial for humans to explore and understand model behavior, we will exclude such

parameters from consideration in the exploration and analysis process.)

Agent-based models almost always contain stochastic elements (if only in the initializa-

tion of agent properties, or in the randomized scheduling of agent behavior). Thus, when

executing a single simulation of the model, in addition to the parameter configuration p, we

must also specify a seed φ ∈ Z for the pseudo-random number generator4 that the simulation

will use as a source for randomness. An agent-based model can thus be viewed as a function

m : P × Z → B, where B is space of model behaviors for a single simulation of the model.

4In practice, the RNG seeds must be selected from a large, but finite range, rather than from the set of all
integers. For example, in NetLogo, there are approximately 1.8× 1016 choices for a random seed. Since this
far exceeds the amount of behavioral sampling that one can afford to do, the finiteness of seed choices is
immaterial in practice.
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Figure 3.2. The interface of NetLogo’s Wolf Sheep Predation model [Wilensky,
1997e]. Model parameters are shown on the left, along with several model
outputs, such as the current number of sheep, wolves, and grass, and a plot
of these values over time. The model view on the right shows the spatial
locations of the mobile agents in this model, which are (unsurprisingly) wolves
and sheep, as well as the amount of grass present on each stationary patch
agent.

In other words, for any given parameter setting p ∈ P , starting with random seed φ we will

obtain some model behavior b ∈ B.

This conception is fairly straightforward, but it requires the full specification of B, which

is more complicated. Since agent-based models produce a vast quantity of data, we will

approach this from the bottom up. The state of a single agent aj at a single moment (t) in

simulated model time may be specified by the set of agent-level variables (vk). In addition to

agents, agent-based models also consist of an environment e, and the state of the environment
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may be captured by some number of environmental variables5: e1, e2, ..., el, ..., eL. Thus

for a model, a complete state of world with J agents, may be specified by the ordered

tuple w = (e1, e2, ..., eL, a1, a2, ..., aJ), where each aj is itself an ordered tuple of agent-level

variables (v1, v2, ..., vK) where the number of variables K may vary between different types

of agents. Assuming simplest case where all agents have a uniform number of agent-level

variables, and where each variable is a scalar value that requires β bits of information to store

it, this description of the world requires β(JK + L) bits of information. In reality, agent-

level and environmental variables may sometimes be more complex data structures such as

lists, trees, or matrices, which may be dynamically resized over time. For instance, it is not

too uncommon for agents to accrue a list of information gathered from previous time steps,

which the agents may use when making decisions, as is the case in the El Farol model [Rand

& Wilensky, 2007; Rand & Sondahl, 2004], based on earlier work on boundedly rational

agents [D. Fogel, Chellapilla, & Angeline, 1999; Arthur, 1994]. The previous expression was

to describe the world at a given time t. However, to describe the behavior of an agent-

based model, it is usually insufficient to consider only the state of the model at the end

of the simulation, or any other static snapshot of model state. The behavior of an agent-

based model unfolds over time, and thus we must consider the state of the world (w) at

each time t. We can fully characterize the model behavior for a single simulation as b =

(w0, w1, w2, ..., wt, ..., wT ), where T is the maximum number of steps the simulation is run.

However, as we mentioned above, agent-based models tend to have stochastic elements,

meaning that the way the simulation unfolds will depend on the random seed φ. Since it is

impossible to run the model for all values of φ ∈ Z, in practice we choose a finite subset of

5In NetLogo, these would correspond to “observer”/“global” variables. NetLogo’s patches, although often
used to model the spatial environment, are in fact agents themselves, and their state is captured in the list
of agents aj .
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Figure 3.3. Diagram illustrating the state information required to capture the
behavior of an agent based model for a given set of parameter settings.

distinct random seeds Φ ⊂ Z, with |Φ| large enough that one an obtain a reasonable estimate

of the distribution of single-run behaviors. In this text we will refer to |Φ| as either the

“number of sampling repetitions” or “number of replicate runs”. Thus, for a fixed parameter

configuration p, the behavior of the model is fully specified by the complete trajectory across

time for each of the agent-level variables of each agent, and their environment, for a repeated

set of model runs with varying random seeds. This characterization of ABM behavior is

illustrated in Figure 3.3. The total amount of memory required to capture this behavior is
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β|Φ|T (JI + L). As an illustrative example, let’s consider a reasonably simple ABM such as

the Wolf Sheep Predation model:

(1) There are several thousand “patch” agents representing square sections of ground

(on which grass may grow), and which each store two numeric values that change

over time.

(2) There are varying numbers of wolf and sheep agents (but let’s estimate an average

of 200) which each store four numeric values which change over time.

(3) There are no global variables which require tracking, thus L = 0, and (JI + L) is

roughly 6000

(4) a simulation run might go for just 1000 (T ) ticks, and we might run as few as 30

(|Φ|) replicates with different random seeds.

(5) Each numeric value requires 64 (β) bits of memory.

In this case, the total amount of memory required to store the behavior of the model is

about 1.3GB, and that is just for a one set of parameter settings p. However, there’s a deeper

underlying problem here. Even if we had ample storage space to keep a full description of the

simulation behavior, it would be too detailed to be useful. As with Lewis Carrol’s fictitious

map that had “the scale of a mile to the mile” (and Jorge Luis Borges’ elaboration on this

theme in the short story On Exactitude in Science), our characterization of the behavior

of a model by recording the complete state space of the model is less than enlightening.

Like a good map (or a good model6), a good measure of model behavior must strip away

(or condense) almost all of the detail, so that only a concise characterization of behavior

remains, which is focused on the type of patterns that the modeler (or analyst) is interested in

6Rosenblueth & Wiener [1945] provide additional discussion about the appropriateness of detail level in
scientific models.
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investigating. However, the complete characterization of behavior is still important, because

it forms the starting point for developing more concise (and also more useful) measures. From

a theoretical perspective, all other measures of model behavior may be defined as functions

that reduce or compress the complete state information described above. In practice, the

data is filtered and condensed concurrently while the simulation runs, avoiding the collection

and storage of large amounts of unnecessary data.

In order to apply the QBME methodology using evolutionary algorithms (or other meta-

heuristic search), we require a behavioral measure that yields a single numeric value7, and

that value should quantify how well the model does (or does not) exhibit the behavior we

are interested in exploring, for a given parameter settings. Formally, we must construct

a fitness function f : P → R, where f(p) expresses the extent to which parameter set-

tings p cause the model to exhibit a specific behavior b∗ ∈ B. This function may be

decomposed into two stages: f(p) = f2(f1(p)). The first stage is f1 : P → B|Φ|, which

is obtained by running the model with various parameter settings and random seeds –

f1(p) = (m(p, φ1),m(p, φ2), ...,m(p, φ|Φ|)). The second stage requires condensing this vast

amount of data into a single number: f2 : B|Φ| → R. This second stage function may itself,

be the composition of a variety of smaller “ingredient” functions, which are behavioral mea-

sures that collapse or condense data across various dimensions or aspects of the behavioral

space. These ingredient measures are the topic of the following section, Section 3.2.

7This is not strictly true. While this thesis focuses on the use of single objective functions, it is both possible
and desirable to extend the QBME framework to multi-objective search, wherein the search algorithm
attempts to maximize/minimize multiple objective functions simultaneously.
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3.2. Formulating Measures

3.2.1. Intra-Agent Measures

As noted above, individual agents within a multi-agent model each have a collection of

properties, or agent-level variables. In the NetLogo language, there is a combination of built-

in variables along with user-specified agent-owned variables (see Figure 3.4 for an example

of agent-level variables for a single sheep in the NetLogo’s Wolf Sheep Predation model

[Wilensky, 1997e]).

While it is possible to create a measure using any conceivable function of these variables,

the most common measurement at this level is just to extract the value of a single agent

property: e.g., an agent’s energy level of that sheep. Short arithmetic expressions (sums,

products, differences, and ratios) of agent properties can also useful, such as the product

of an agent’s mass and its velocity in a physics-based simulation. In this example, the

resulting measure would represent the momentum of the agent – a quantity which is not

directly stored for any agent, but can be easily computed from a combination of two other

agent-level properties.

Although measurements of diversity and similarity are less suited to the individual level

of analysis than they are to the upper levels (as we will discuss below), they can still arise

and be useful in certain contexts. For example, at a multi-agent modeling workshop that I

recently led, one of the participants was interested in modeling changes in people’s political

alignment and affiliation. In this case, each agent’s x-coordinate (xcor) would represent a

range between conservative and progressive on issue 1 (perhaps a social policy issue) while

the agent’s y-coordinate (ycor) would represent a range on the same scale for issue 2 (perhaps

a fiscal policy issue). Moreover, this scheme can be extended to any number of dimensions,
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Figure 3.4. An “agent-monitor” (or “inspector”) window in NetLogo provides
a listing of agent-level variables, along with the current values of each variable,
for a single sheep in NetLogo’s Wolf Sheep Predation model [Wilensky, 1997e].
In this case, all but the last variable (energy) are default/built-in variables that
every mobile agent (“turtle”) in NetLogo possesses. The energy variable is an
additional user-defined variable specific to the Wolf Sheep Predation model.

wherein an agent would have K agent-level variables v1, ..., vk, ..., vK corresponding to

alignment with K different issues. In this case, measuring the homogeneity of vk values

within a single agent would provide a measure of political consistency and/or strict party

affiliation, whereas heterogeneous values might indicate more complex ideological affiliations,

or more independence in the subscription to political institutions. Intra-agent measures form

natural building blocks for creating multi-agent measures at the next level of complexity.
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Figure 3.5. A visualization from NetLogo’s Flocking model [Wilensky, 1998],
after the birds have self-organized into a number of disparate flocks.

3.2.2. Agent Group Measures

It is not uncommon for ABMs to contain several distinct types of agents (NetLogo uses

the concept of “breeds” for this purpose). An example of this would be a predator-prey

model, where predators and prey each belong to a distinct agent type (as depicted by the

wolf and sheep shapes in Figure 3.2). Even when there is only one type of agent, it may be

logical to divide the agents into groups based on some criteria (e.g., geographical location).

For example, in the Flocking model [Wilensky, 1998], birds self-organize into groups/flocks

(see Figure 3.5). When such groups exist, we may be interested in computing inter-agent

measures among the birds in each flock (in fact, a fleshed-out example of this appears in

the measurement of vee-shaped formations in Chapter 4), rather than treating all birds
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as belonging to the same population. In fact, recent research [Levy & Wilensky, 2008a]

suggests that the identification of smaller group-level structures (between the individual and

aggregate level) may be important for understanding, and thus analyzing, emergent behavior

in complex systems. In many cases, though, the whole population of agents in the model is

simply considered as a single group.

In each of these cases, it is useful to characterize behavior at the group level. In terms

of the the QBME framework, this moves the discussion up one level of analysis, and accord-

ingly it becomes possible to design measures for different aspects of model behavior than

were possible at the single-agent level. Perhaps the simplest group level measure is a count

of the number of elements (agents) in the group. This group-based measure requires no

information about the agents it is composed of, beyond their mere existence, and thus it

essentially ignores the lower agent-level properties. However, many richer group level be-

havioral measures can be constructed by combining single-agent measures in a variety of

ways. One straightforward measure is the “mean” value of some single agent-measure, taken

across the group. Depending on context, alternative forms of averaging (median, mode) are

also useful, as well as extracting extrema from the group (minimum/maximum value). While

there is no limit on the complexity of functions that could be employed to reduce a collection

of individual values to a single group value, much leverage can be gained from appealing to

the organizing principal of diversity. Measures of diversity (such as the standard-deviation of

agent-level measures) are surprisingly useful for characterizing group-level phenomena. For

instance, a group of agents with diverse set of x and y coordinates is more loosely clustered,

while a group of agents with homogeneous coordinates is tightly clustered. In an economics

model, measuring variations between the amount of money held by the constituent agents

in a population provides important information about how wealth is distributed. There are
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also some more specific measures of diversity of wealth (or wealth inequity), such as the Gini

coefficient [Gini, 1912], which will reappear in Chapter 5 in the context of measuring the

inequity of the degree distribution in networks. Beyond measuring the standard-deviation of

the distribution, there are a number of other measures of statistical dispersion, including the

variance, range, interquartile range, mean difference, median absolute deviation, and coeffi-

cient of variation. Higher order moments about the mean, such as skewness, are potentially

useful for measuring the shape of diverse distributions.

Note that in most cases, we consider agent groups to consist of an unordered set of agents,

and thus most agent measures are functions of the distribution of agent-level measures among

members of the set. However, less frequently, the agents within the group may have a natural

ordering (e.g., by the age/longevity of the agent, or by position, or by any agent-level measure

of arbitrary complexity), which agent group measures may need to take into account. As

an example, an agent-group measure in a simulated economic marketplace could look at the

correlation between company age and company size, rather than looking at either variable

in isolation. We can view correlation between variables as an extension of the theme of

diversity – how are the agents’ variables similar or different with respect to one another?

However, not all behavioral measures fit neatly into the theme of diversity. For instance,

another simple agent group measure is to take just a single agent’s value from the group,

but choose that agent based on certain criteria: e.g., measure the wealth of the largest (or

smallest) company in the group. Such measures take this form: Choose an agent based on

agent-level measure A, and then report a different agent-level measure B, measured on that

agent. This method extends naturally into the more general agent-group measure: Filter the

agent group based on agent-level measure A, and then apply agent-group measure B to the

filtered subset. Finally, as mentioned above with example of groups of flocking birds within
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a model, it is possible to have groups of groups, in which case multiple layers of group-level

behavioral measures may be applied. Although in principal one could imagine applying

group-level measures recursively for many layers, in practice most agent-based models have

fewer than two levels of grouping.

3.2.3. Network-Based Measures

Along with the rise of complex systems science, there has been an increasing focus in the

field of network science [Amaral & Ottino, 2004; Barabasi, 2003; Watts, 2004; Newman,

Barabasi, & Watts, 2006; Newman, 2010]. Although network science has roots in both

mathematical graph theory (stemming from Euler’s famous solution to the Königsberg bridge

problem [Euler, 1736], as well as later groundbreaking work by Erdős and Rényi [1959; 1960])

and social network analysis (from Moreno’s invention of “sociometry” [Moreno & Jennings,

1938] to later experimental and theoretical work [Milgram, 1967; Granovetter, 1973; Burt,

1995; Wasserman & Faust, 1994], this new (or revitalized) field has a stronger focus on the

widespread applicability of networks as a tool for improving understanding across a wide

range of disciplines and phenomena (protein-protein interactions, metabolic pathways, gene

regulatory networks, neural networks, air transportation, epidemics, scientific and artistic

collaborations, ecological food webs, the electrical power grid, the Internet, the world wide

web, etc.). (A full introduction to this active area of research is simply not possible in

the space available here, so interested readers are encouraged to follow up on the citations

provided above.) Agent-based modeling goes hand in hand with the rise of network science,

providing a tool that goes beyond static network analysis, and thus allowing modelers to

explore dynamic processes on and in networks at both the individual and aggregate levels.

The ABM approach also holds promise for gaining insight into not just the patterns, but also
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Figure 3.6. A visualization from NetLogo’s Preferential Attachment model
[Wilensky, 2005], which demonstrates how the power of positive feedback (a
“rich get richer” situation) can create power law degree distributions in natural
and engineered networks. For scale-free networks, one important measure of
the degree distribution is the scaling exponent which describes the power law.
For general networks, a measure of how skewed the degree distribution is may
help in understanding the network structure.

the “mechanisms” by which networks form and evolve. See Figure 3.6 for a visualization

of the NetLogo Preferential Attachment model [Wilensky, 2005], which demonstrates the

mechanism Barabasi and Albert [1999] proposed for generating scale-free networks.

In the context of this chapter, the crucial point is that there are many agent-based

models where it is insufficient to a characterize agents as simply belong to one group or

another (i.e., sorting the agents into different bags, and looking at properties of those bags).

Rather, important aspects of model behavior may rest on the connections (links) between
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agents, and how these connections are structured in relation to one another. This is precisely

what a network perspective provides; the network level of analysis exists above the individual

level but below the group level8.

One difference between group-level and network-level measures, is that whereas most

group-level measures (apart from group size/count) tend to be condensing/consolidating

some individual-level measure, there are a variety of interesting network-level measures that

do not depend on properties of the agents (nodes9) Network-based measures can mostly be

divided into two types: those are descriptive of a single node, and those that are descriptive

of the network as a whole. The former range from simple measures, such as a node’s degree

(number of links to neighboring nodes), to more complicated measures of a node’s position

in the whole network, such as a node’s betweenness centrality (related to the number of

shortest paths from all other nodes that would travel through this node). When network-

based measures are applied at the individual level, then some form of group level measure

is required to aggregate the results. For instance, one might measure the average degree, or

the maximum betweenness centrality, among the nodes in the network. In the latter case,

the network level measure may apply to the network as a whole. This too can range from

simple measures, such as the number of links in the network or the number of connected

components, to more complicated measures such as the network diameter (the length of

the longest shortest path between any two nodes), chromatic number of the network (how

few colors can be used to color the graph such that no neighboring nodes share the same

8While it is possible for each node in a network to represent a group of agents, in this case we would probably
shift our perspective to consider each network node an individual agent (serving as a proxy for a group).
9One unfortunate byproduct of network science’s interdisciplinary roots is that the nomenclature is not
standardized. In graph theory, a graph is composed of vertices and edges. In social science, social networks
tend to be composed of actors and ties. In parts of computer science, they are nodes and links, which are
the terms I will generally use.
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color), or the number of motifs (small characteristic network structures like triads) which are

subnetworks of the network. As a third use of networks, one may use network-based measures

to assign agent to different groups, at which point group level measures can be applied. In

particular, there has been much interest in recent years in determining community structure

for a given network, and various algorithms have been suggested (e.g., [Newman, 2006]) for

partitioning the network into disjoint sets, based on the relative link density within and

between sets.

This cursory discussion above barely scratches the surface. Networks can be directed or

undirected, and weighted or unweighted, simple or non-simple. There are whole areas of

algebraic graph theory and dynamical systems devoted to mathematical analysis of graphs

and of Markov processes taking place on graphs. Hypergraphs (which connect more than

two nodes together with one link) also exist, though they are not commonly used in complex

systems and agent-based modeling research at present. However, to avoid leading this dis-

cussion too far afield, readers are referred to other readily available sources, such as Newman

[2006; 2003; 2010], for more detailed discussion about a variety of network properties and

network-based measures. Network-based measured will also reappear in Chapters 5 and 7, al-

though in these cases the measures are being applied within the context of the ABMs, rather

than as extrinsically-defined behavioral measures or fitness functions. The main point to

remember is that network-based measures provide important tools for quantifying the richly

structured information contained in the relationships between agents.

3.2.4. Temporal Measures

Time is a critical element of agent-based models. Unlike certain mathematical techniques

that solve for equilibrium solutions or attractor states as t → ∞, ABMs model time in
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discrete units, and may reproduce patterns of behavior that unfold over time. It is a chal-

lenging, but necessary task, to quantify these temporal behavioral patterns. Time may be

viewed as a higher “level” in the same containment hierarchy as individuals and agents, in

the sense that each time period (or “tick” in NetLogo parlance) contains an agent group,

which in turn contain individual agents. In this view, the model history is composed of a

large number of disconnected snapshots of the model world, each capturing a (simulated)

moment frozen in time. Alternatively, it is more flexible to view time as a dimension that is

orthogonal to the previous concerns of agent and group measurement. In this way, temporal

measures can condense time across agent level, group level, or network level measures. As

a specific example, let us consider temporal averaging. In the Wolf Sheep Predation model,

each wolf has an energy property. We might want to measure the average maximum energy

of the wolves or the maximum average energy of the wolves. In the first case, for each time

t we could compute the maximum energy of the wolves, and then take the average for all

values of t; this would tell us generally how energized the currently most vital wolf (which

would change over time) was. In the second case, we could first find the average energy

across the lifespan of each wolf, and then take the maximum of those values; this would

tell us the average energy value of a specific single wolf, which was the most energized over

the course of its life. Both of these measures take the average over time, and the maximum

across individual agents, but depending on which measure is applied first, the interpretation

is slightly different. There are, in fact two other interpretations of the English phrase “max-

imum average energy”, which could involve taking the average across wolves followed by the

maximum across time, or the maximum across time followed by the average across wolves.

However, the main point was that even when applying the same measures (maximum and
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average) at the same levels (group level and time level, respectively), the result can change

based on the order of application.

Returning to our theme of “diversity”, temporal variation (as measured by standard

deviation or variance of an agent or group-level measure over time) is indicative of volatility.

In Chapter 4 we will see an example of measuring the variation in flock heading (a group-

level measure) over time, to find flocks of birds that have unstable changing headings, rather

than converging to a common fixed heading.

Another important point is that unlike group-level measures, where we are condensing

a set of results, with temporal measures we are condensing an ordered sequence of data.

So while unordered measures such as averages, minimum, maximum, variance, etc, may

apply, these neglect important sequential structure. Applying our theme of diversity in a

temporally restricted manner, we create measures that examine the difference between the

state of the world at time t, and the state of the world at time t + 1. In this case, we are

brushing up against ideas from calculus: differentials and approximating derivatives. In the

Wolf Sheep Predation model, measuring the change in the number of wolves or sheep in the

world (a group level measure) over time gives us the birth rates at each point in time. Since

applying the difference between each time step from 1 to T still leaves us with T − 1 data

points, we still need to apply a temporal measure that will collapse across time, such as an

average or maximum.

Often, we are only interested in the model behavior close to the end of the run, after

the model has had a chance to “settle down” from its early-behavior transient state into its

normal steady-state behavior. In general, there is no guarantee that model behavior will

ever “settle down”, or that steady-state behavior exists. However, it is still often preferable

to sample model behavior later on in model time, rather than near the beginning, when
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Figure 3.7. Plot of food remaining in each of the three original food source
piles, during a typical run of the NetLogo Ants model [Wilensky, 1997a]. The
much steeper slope in the decline of one of the three piles corresponds to the
presence of a pheremone-based ant trail to that pile, which causes the ants to
exploit that food source more quickly.

measures are likely to be overly influenced by random initial conditions. In both exploratory

examples in Chapter 4 and the benchmark examples in Chapter 9, there will be examples

where behavior is measured only over the last 100 ticks. Although time is an important

component of ABMs, there are also many circumstances in which model behavior can be

measured simply by taking a measurement of the state of the world at the final tick of the

simulation. This is useful if you’re only interested in where the simulation ends up, and not

the path it took to get there. In this case, the temporal measure simply discards most of

the data from the run.

3.2.5. Ant food foraging example

Before moving to the next level of complexity, let’s unpack a more detailed example of a mea-

sure that ties together ideas from several of the areas described above. This example comes
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from the NetLogo Ants model [Wilensky, 1997a], where ant agents interact via pheromone

trails they drop in their environment while foraging for food. In the Ants model, there are 3

separate food sources located at varying distances from the colony entrance. Food is modeled

as a numeric property of the patch agents that comprise the environment – each patch may

store up to 2 units of food. Figure 3.7 shows a plot of the amount of food remaining in each of

the 3 food sources (piles). The sharp decline in one of the food piles over time indicates that

the ants have been harvesting that pile quickly relative to the others. In this Ants model,

one qualitative behavior of interest is the emergent formation of ant lines, which permit

much more efficient exploitation of food sources. As a proxy for this qualitative behavior,

we can examine create a quantitative measure of the rate of depletion for a specified food

source. To be fully specific, let’s suppose we are interested in whether an ant line exists to

the farthest away food source between 400 and 500 simulated ticks. The intra-agent measure

will simply be the food patch-level variable for each patch. The patches that make up each

food source will be considered separate groups, and the group-level measurement is a sum of

the food patch-level measure across the patches in each group. We will filter the group-level

results, so that only the food count for the source that is farthest away remains. At the

temporal level, we will take the positive difference of the group-level measure over time for

400 ≤ t ≤ 500 (though note that if we are only interested in t ≤ 500, it is unlikely that we

will continue to run the simulation longer, so the condition t ≤ 500 may be unnecessary).

The temporal measure is completed by taking either the maximum or the mean across these

time steps. Taking the maximum value would be helpful for detecting whether an ant line

ever existed between 400 and 500 ticks (although it could be thrown off if, despite the lack

of trail, quite a few ants happened to collect food from that pile at the same time), whereas
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taking the mean value would be more indicative of whether an ant line persisted for a large

portion of the time between 400 and 500 ticks.

3.2.6. Cross-Replicate Measures

As discussed above, it is necessary to run stochastic models multiple times with different

random seeds (replicate runs) in order to evaluate their behavior. The measures we have

built up so far (agent level, group level, network level, and temporal) each characterized

behavior for a single run. Moving up one more level of analysis, cross-replicate measures

combine/condense the results of the single-run measures. Since there is no particular order

to the random number generator seeds used for replicate runs, the results from multiple runs

form an unordered set of values. Quite commonly we are interested in the behavior of a

“typical run” of the model, or perhaps in the “average” or “characteristic” model behavior.

In many cases, taking the mean or median of the individual runs will serve this purpose.

However, for many models, the idea of a “typical run” turns out to be a myth, as model

results may vary widely, and the variation of runs can reveal something more important

about the model behavior than any single run would. Again, we appeal to the theme of

diversity - this time at the level of diversity among runs, rather than diversity among agents,

groups, or agent/group properties over time. As before, the standard deviation of the results

provides a rough (but useful) measure of diversity among the runs. A low standard deviation

suggests consistency and also predictability of results, whereas a high standard deviation

corresponds to less predictability. However, the large diversity of results can stem from a

number of possibilities. It could be the result of a process that is simply very noisy, and the

outcome is quite random; this is often not very interesting, although it is helpful to know how

noisy/random a model can be. On the other hand, the diversity of results may stem from
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a path-dependent process, where sensitivity to initial conditions can lead the model toward

two or more different attractors in the model’s state-space. This topic will be discussed in

more detail below in Section 3.3.2. In either case, the standard deviation will serve as an

indicator of diverse results, and the practitioner would be wise to examine the results closely

to determine the underlying cause of the variance. Additionally, more complex distributional

measures (such as statistical measures of bi-modality) might be developed and used to try

to identify specific cases of divergent results. Rather than looking for a typical run or for

diversity of results, in situations like model testing (discussed in Section 3.3.6) it can also

useful to simply search for extreme model behavior. In this case, taking either the minimum

or maximum of the set of replicate results is expedient.

3.2.7. Cross-Parameter Measures

Though cross-replicate measures are often a natural stopping place for measure-building, it is

possible to go up yet a further level, and create measures that compare the results of running

the model with different parameter settings. This type of measure operates on the output

of cross-replicate measures. There is one particular cross-parameter measure that is worth

mentioning: measuring the differential with respect to some parameter. The goal here is to

measure how much change in behavior (as quantified by some cross-replicate measure) will

result from a small change in the value of a model input parameter. More formally, given

a cross-replicate measure m(p) for parameter setting p = (p1, p2, ...), the cross-parameter

differential measure is
m(p)−m(p− uδ)

δ
, where u is a unit basis vector of P , corresponding

to the specific parameter being varied. As will be discussed below in Section 3.3.3, this

measure can be useful for identifying phase transitions or critical thresholds in the model’s
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parameter space – places where small changes in a parameter can result in large changes in

model behavior.

3.2.8. Pattern-Based Measures

There is one more important genre of measure, which does not fit as neatly into hierarchy of

levels that we have been discussing, but can be applied at multiple levels. This is the genre

of “pattern-based” measures, which compare simulation data to patterns or data that is

from some external source (i.e., a source extrinsic to the model). In keeping with the theme

of diversity, these measures are quantifying the sameness or difference between a specified

reference pattern (generally obtained or derived from empirical or real-world data) and the

results of the simulation. The relevant question that these measures often seek to answer is:

how can one quantify the difference between the reference patterns and the model’s behavior?

Answering this question is important for both model calibration and sensitivity analysis, as

discussed below in Sections 3.3.4 and 3.3.5.

Pattern-based measures can be applied at all of the level of analysis we have discussed so

far. At the individual level, one can compare whether individual agents match the properties

of the object they are representing in the model’s target phenomena. For instance, in a model

of evolutionary biology, one might compare the percentage of so-called “junk DNA” with the

amount empirically measured in the wild. At the group level, the distribution of agent-level

measures can be compared against an empirical distribution – e.g., how closely does the

simulated distribution of longevity of a species match the observed distribution? It’s also

possible to look for spatial patterns formed by the group – e.g., in Chapter 4 we measure how

closely a group of birds matches a “vee” or “eschelon” formation, such as those exhibited by

Canada geese (and certain other species of large birds). At the network level, all kinds of
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network measures can be compared against those extracted from real-world networks – e.g.,

in a model of the growth of online social media networks, how does the average clustering

coefficient of the simulated network compare with the clustering coefficient of Twitter? At

the temporal level, simulated time series data can be compared with data from longitudinal

studies or historical records; more detailed examples of this are discussed in Chapters 6

and 9. At the cross-replicate level, distributions of model results can be compared with

distributions of real-world experimental results – e.g., in a model of airplane boarding, the

length of time taken to board the craft will vary (both in the real world and in the model),

and these distributions of boarding times can be compared. Similarly, at the cross-parameter

level, changes in model results resulting from changes in parameters may be compared to

results from experiments where parameters were varied. Of course, pattern-based measures

can also be used to compare model results with patterns that have not (or have not yet) been

found in the target phenomena. Searching for unrealistic or exotic patterns may sometimes

be useful in exploring the range of possible model behaviors, as mentioned in Section 3.3.6

below.

3.2.9. More complicated measure combinations

It is worth mentioning that one may combine the various measures above in many and var-

ious ways, in particular with respect to our theme of diversity and change. We may also

measure the change (over time) of the uniformity/diversity of a group of agents over time.

Or, we might measure the reverse: that is, the uniformity/diversity *of* the change. Beyond

measuring the change of some measure, we may look at the change in the change of some

measure (i.e., the second derivative). Or rather than looking directly at the pattern-based

measure discussed in the previous section, we might look at measures of the change in the
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pattern-based measure - either over time, or across different parameter settings. And again,

instead of looking at the change in the pattern, we might look for the pattern of the change.

For example, in the NetLogo Fireflies model [Wilensky, 1997b], fireflies are repeatedly chang-

ing state (going from lit to dark, or dark to lit), and then changing number of lit fireflies

over time can be plotted. Within this time series, we can seek patterns of change, pos-

sibly using tools from signal processing, including autocorrelation, spectral decomposition,

Fourier/wavelet analysis, etc. These combinations are not intended to be an exhaustive list,

but merely demonstrate some of the rich possibilities for using diversity/change as a theme

for constructing more complicated measures from the simpler measures discussed above.

However, often simple measures work quite well for driving the model exploration process,

and more complicated measures should only be used when the target model behavior is

sufficiently complicated to merit them.

3.3. Application of Measures to Model Analysis Tasks

Now that we have discussed the various ingredients and building blocks for developing

measure to characterize and quantify behavior in ABMs, let us turn our attention to the

import question of how these measures can be applied to important modeling analysis tasks.

This portion of the QBME framework builds on the earlier ANT (Active Nonlinear Testing)

framework proposed by Miller [1998], with appropriate expansions for the context of agent-

based modeling (as opposed to the equation-based system dynamics context, where ANT

was originally introduced).
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3.3.1. General exploration

Before moving on to various specific model analysis tasks/applications, I would like to make

a case for general exploration. That is, rather than having a concrete task/goal in mind, it is

useful for modelers to simply to plumb the depths of what is possible in a model’s behavior.

Modelers commonly explore model behavior in their own ways - twiddling the parameters

of the model, trying different combinations, running the model multiple times and looking

at what happens. Modelers might describe this activity simply as “tinkering”, “playing

with the model”, or “getting a feel for things”. This informal tinkering process is a natural

(and I would argue necessary) part of both model development and model understanding.

Through tinkering, modelers are probing the system to learn something about it. It is an

iterative process of developing small hypotheses (or perhaps merely “hunches”) about model

behavior, and testing them. I would like to argue for augmenting this tinkering activity

with additional QBME-enhanced tinkering. The QBME framework provides tools to get

a feel for model behavior from the opposite direction of standard tinkering. In standard

tinkering, each time someone runs the model with certain parameter settings, they are trying

to answer the question “what model behavior do these parameter settings produce?” The

QBME framework allows one to formulate inverse questions of the form: “what parameter

settings will produce this kind of model behavior?” Admittedly, because the QBME approach

requires the use of a GA (or other search algorithm) that must run the model a large number

of times with different parameter settings, this new approach to tinkering does not provide

as short of an interactive feedback loop for exploring the model as standard tinkering. I have

three responses to that:
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(1) the power to answer inverse style questions about model behavior makes it worth

the wait.

(2) the approaches are complementary - while waiting for the results of a QBME query,

one can continue to tinker with the model in the old-fashioned way, and the two

tinkering methods will mutually inform exploration directions for the other.

(3) the development of new software tools (e.g., see Chapter 10) along with the rise of

massively parallel cluster/grid/cloud computing platforms will continue to shorten

the time and effort required to issue QBME queries and receive results.

One may make the additional objection that it can be difficult for modelers to create behav-

ioral measures to search for. To this objection, I have four responses:

(1) Modelers are already creating a variety of numeric measures of model behavior,

for the purposes of analysis and visualization. Many (though not all10) of these

measures will be suitable for driving an exploratory search process.

(2) While certain behaviors can be very challenging to quantify, there are many other in-

teresting measures of a model’s behavior that are very straightforward to formulate,

and can still provide new insight into model dynamics.

(3) My hope is that the creation of frameworks (such as QBME) will provide modelers

with the grounding they require to start constructing useful measures for query-

based exploration.

(4) Like many other skills needed for good modeling, some practice will be needed to

gain fluency using QBME methodology. I believe that the learning overhead will be

well worth the gain.

10Besides being a good measure of the target behavior, a measure must also satisfy additional criteria in
order to promote efficient exploration of the search space. This will be explained further in Section 3.4.2.
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Using ABMs of collective animal motion as a case study, Chapter 4 will provide several

examples of using QBME for general exploration purposes, to discover interesting behavior

that can be elicited from the model, and the parameter settings which lead to that behavior.

3.3.2. Path dependence, multiple attractors, and state space analysis

In Section 3.2.6 above, we mentioned that the diversity of results from different replicate

model runs can stem from a path dependent process [Brown et al., 2005; Arthur, 1998],

where sensitivity to initial conditions can lead the model toward two or more different at-

tractors in the model’s state-space. Thus, we can use measures of variance among runs as a

mechanism for detecting path dependent behavior: situations where the model can arrive at

qualitatively different outcomes depending on chance events and random initial conditions.

Sometimes places in the model’s parameter space with multiple attractors are indicative of

a phase transition occurring in one (or more) of the model’s parameters. This general ap-

proach to phase transition identification was taken by Brueckner and Parunak [2003] in their

multi-agent parameter exploration method. Although it is a good indicator, the presence

of multiple attractors does not always indicate a phase transition, and we will discuss an

alternative approach to phase transition identification in Section 3.3.3 below.

As a concrete example, two potential attractors in the Wolf Sheep Predation model are

“complete extinction” and “sheep inherit the earth”11 [Wilensky & Reisman, 2006]. In the

“complete extinction” case, the sheep die out first, causing all the wolves to perish. In the

“sheep inherit the earth” case, the wolves die out first, leaving the sheep to multiply endlessly

(assuming there is no constraint on the sheep’s supply of grass). Consider a measure of the

11There are other attractor states of the system, such as where the wolf and sheep populations oscillate
in a stable cyclic pattern, but these two extreme attractors best illustrate the point I wish to make about
variance of results.
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number of sheep after 400 ticks. With the model’s default parameter settings (which starts

with just 100 initial sheep), running the model 10 times produces these 10 values: 0 0 0

0 5148 14924 21310 32215 71078 78892. The four 0s represent the “complete extinction”

attractor, while the other values likely represent the “sheep inherit the earth” attractor (at

various stages of the sheep population’s exponential climb toward exhausting the computer’s

available RAM).

3.3.3. Phase transitions, critical thresholds, and leverage points

In Section 3.2.7 above, we mentioned the usefulness of cross-parameter measures for locating

phase transitions in the model’s parameter space. To elaborate on this theme, let us consider

a specific example, the NetLogo Fire model [Wilensky, 1997c], which is an extremely simple

model of a forest fire (or possibly any other phenomena modeled by percolation across a

square lattice). This model has one parameter density, which controls the initial density of

trees in the lattice. Since the fire spreads only from tree to neighboring tree, it is easy to

predict that the forest fire will die out quickly on a nearly empty lattice, whereas it will burn

every inch of the forest if the lattice is completely full. However, we might be interested

in how much the outcome is effected by small changes in the tree density. Thus, we could

construct a measure of the change in average amount of forest burned at density D and at

density D − 1. If we were to search for the maximum absolute value of this measure, we

would find a striking phase transition that occurs right around a tree density of 60%, as

shown in Figure 3.8.

Scientists may have an intrinsic interest in discovering phase transitions in the model’s

parameter space, simply for better understanding the modeled phenomena. However, in

some modeling contexts, the discovery of these phase transitions can also be very important
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Figure 3.8. Plot showing the amount of forest burned in the NetLogo Fire
model [Wilensky, 1997c] as a function of forest density. This plot also shows
the relationship between the derivative (as approximated with a unit change
in density) and the location of the phase transition around 60% density.

for policy-makers. In some ABMs, model parameters correspond to real-world levers that

policy-makers have the power to manipulate, and in these situations phase transitions may

represent “leverage points”, where a small amount of effort (or money) could go a long way

toward effecting change.
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3.3.4. Calibration

In Section 3.2.8 above, we discussed how pattern-based measures could be used to compare

model results with a reference pattern which we might like the model to match. Calibra-

tion is the process of changing a model or manipulating its input parameters such that it

more closely matches a desired output, or reference pattern, which is often derived from

empirical/real-world sources, although it could also be the output of a different model. For

the purposes of this thesis, we will restrict ourselves to the form of calibration where only

the model parameters are being varied and the model’s code remains unchanged. Using

the QBME framework, to calibrate a model we require an error measure (or alternatively a

similarity measure) which compares the model output to the reference pattern. Then genetic

algorithms (or other meta-heuristic search algorithms) can be used to find parameters that

minimize the error measure (or maximize the similarity measure).

For instance, one might compare the population dynamics of the species in the Wolf

Sheep predation model with historical population dynamics in a closed ecosystem being

studied by population biologists (as we will do for one of the benchmark tasks in Chapter

9. In this particular case, the reference pattern is a list/vector of numbers corresponding to

the historical population values, and the similarity measure uses the correlation coefficients

between the real and simulated datasets.

Another example of calibration is explored in Chapter 4, when searching for parameter

that cause vee-shaped bird formations. In this case, rather attempting to match specific

numeric values, the similarity measure judges how close a formation is to a perfect vee for a

range of vee angles obtained from the observation of Canada geese in the wild.
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The calibration process is another area where diversity plays an important role: namely,

the diversity of results obtained from comparing multiple simulation runs against the em-

pirical data. Variance in these results highlights a trade-off between how closely and how

often the simulation agrees with the reference pattern, an issue that will be discussed in the

context of a real calibration problem (the well-known Artificial Ansazi model) in Chapter

6. Because calibration is a particularly common and important task for modelers, this topic

receives more extensive treatment in the case studies given in both Chapters 6 and 7.

3.3.5. Sensitivity Analysis

Whereas calibration is the process of seeing how well a model is able to match its target, under

certain conditions, sensitivity analysis is concerned with how sensitive the model’s results

are to changes in its rules, assumptions, or parameters. Again, in the present document,

we will restrict ourselves to studying sensitivity analysis with respect to changes in model

parameters. Sensitivity analysis is an extremely important (yet sadly often neglected) aspect

of agent-based modeling because it provides a basis to evaluate the robustness or fragility

of the model. Conclusions drawn from models that are fragile (highly sensitive to specific

parameter settings) are not as trustworthy than those drawn from robust models.

Like calibration, sensitivity analysis also relies on some error measure to measure how far

off the model result is from the desired reference pattern. As a result, to perform sensitivity

analysis in the QBME framework, we may simply search for parameters (within the range

that we would like to see that the model is robust) that maximize this error measure, rather

than minimize it. If the search is able to find parameter settings that yield a large error

measure, this indicates fragility, and also provides information about which parameters the
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model is most sensitive to. Sensitivity analysis will be discussed in greater detail in the

Artificial Anasazi case study in Chapter 6.

3.3.6. Model Testing

Another essential task in the ABM development process is model verification, which is the

process of determining whether the ABM is a correct implementation of the model author’s

conceptual model [Wilensky & Rand, 2007, in press; G. Gilbert, 2008]. More informally,

it is checking whether the rules of the model really are what you think they are. Model

testing is a form of software testing that can aid in the verification process. Model testing

may involve either static analysis of the model’s code, or dynamic testing during model

simulation. Within the latter category, there are a variety of approaches (such as unit

testing, which checks whether individual subcomponents of the model are working correctly),

or checking model invariants (e.g., that the total amount of money/energy in the simulated

economy/chemical reaction should always remain constant). In many cases, these approaches

rely on testing the model with numerous random parameters (or perhaps focused on the

boundaries of valid parameter ranges) and checking that certain conditions have not been

violated. These are all good approaches to model testing, and should be considered as useful

tools in the model verification process, along with non-automated human-based efforts such

as code reviews, or model replication attempts [Wilensky & Rand, 2007].

However, building on previous work in using evolutionary algorithms for software/model

testing [Miller, 1998; Wakeland et al., 2005], the QBME framework suggests another ap-

proach to complement these techniques. Because ABMs have stochastic elements, expecting

the model to produce an exact result is often too strict a criterion. However, model authors

should be able to offer definite ideas about what range of results the model should be able
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to produce (either based on their modeling assumptions or based on analogy to the target

phenomena being modeled) . For instance, model authors might believe that the number of

wolves in their modeled world will never exceed 1000. A traditional model-checking approach

might run the model thousands of times with different random parameter settings, and check

if the number of wolves ever exceeds 1000. The QBME approach is similar, but differs in

one key aspect. We construct a measure of the maximum number of wolves at any time

step, and take the maximum value of that measure across replicate model runs, and then

use a GA to search for parameters that maximize this measure. The advantage here is that

while random sampling of the space may be extremely unlikely to find parameter settings

that result in unreasonably large wolf populations, using the maximum number of wolves as

a fitness function may efficiently drive the genetic algorithm toward high-wolf parameters.

Model testing can also be a beneficial side product of other forms of QBME exploration –

for instance, while performing sensitivity analysis in Chapter 6, we discovered a bug in the

published Artificial Anasazi model, due to a discrepancy between our intuitions about which

model parameters the GA had identified that the model was sensitive to. We also examine

one case of explicit model testing in the benchmarks in Chapter 9.

3.4. Applying Measures in Search-Based Exploration

3.4.1. Genetic Algorithms Overview

Before discussing the interaction between behavioral measures and the search algorithms

that use them to drive the exploration process, a brief review of genetic algorithms (GAs) in

this context may prove helpful. The genetic algorithm starts with a population of individ-

uals. However, when we say “individuals” here we are not talking about individual agents
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within the ABM, but rather each individual corresponds to one configuration of the param-

eter settings for the ABM. The initial population (generation 0) is composed of individuals

that represent randomly chosen parameter settings in the space of possible parameter set-

tings being searched. The following steps are repeated. First, the “fitness” of each individual

in the population is evaluated according to the behavioral “objective function” (or “fitness

function” in genetic algorithms parlance). As mentioned in the sections above on designing

behavioral measures, evaluating the fitness function tends to require running the agent-based

simulation multiple times with the parameter settings represented by the individual, and it

results in assigning the individual a numeric fitness score. Then certain individuals from the

current generation are selected for “reproduction”. There are various mechanisms (roulette

selection, tournament selection, rank-selection, etc.) for selecting these individuals, but they

all have the common trait that individuals that have better fitness are more likely to be

selected, but that there is some random element to the selection process, so that less fit

individuals do have some chance of passing on their genetic material as well. A selected

individual (parent) may either undergo sexual reproduction with another parent (using the

crossover/recombination operator) to produce two children, or simply undergo asexual re-

production (cloning) to produce a single child. Crossover may be as simple as inheriting

certain parameter settings from one parent, and the rest from the other (although it can be

slightly more complicated if parameter settings are encoded using lower-level representations

such as binary strings). The same individual may be selected as a parent multiple times,

and there are no constraints such as monogamous partnerships, etc. The mutation operator

is applied to all the “children”, though the mutation operator works probabilistically such

that mutations may occur (multiple times) in some children and not at all in others. Thus,
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some children may end up being identical copies of their parents, while others may be combi-

nations of multiple parents, and some may have been altered in random ways. The number

of children created in this manner is equal to the original population size, and it is these

children that form the “next generation” of the genetic algorithm12 The fitness of each child

must now be evaluated, and these children will have children, and the cycle will continue.

The cycle may stop either when some target fitness level has been reached (corresponding

to a configuration of parameter settings that sufficiently elicits the desired behavioral pat-

tern), or when some specified number of generations (or model evaluations) has passed. This

process is illustrated in Figure 3.9.

3.4.2. Behavioral measures as fitness functions

Not all behavioral measures are created equal, and this is especially true for the purposes

of driving evolutionary search processes. In the context of the Wolf Sheep Predation model,

let us suppose that we would like to search for parameters that lead to the extinction of

the wolf population. Let us consider two different behavioral measures to serve as fitness

functions for this exploration task. We define measure fA to be the number of wolves after

some specified number of ticks (T ), and ask the search algorithm to find parameters that

minimize this function. We define measure fB to be 0 (extinct) if there are no wolves left, or

1 (alive) if there are any wolves remaining at time T , and ask the search algorithm to find

parameters that give us a result of 0. Both of these measures quantify the “wolf extinction”

behavior for us. Furthermore, one could argue that measure fB marks the extinction criteria

more clearly/precisely than fA. However, in the QBME context, fB is a poor choice, and

12This describes the classic generational population replacement strategy, but there are other variants. e.g.,
In a steady-state GA, only a single individual in the population is replaced at a time.
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Figure 3.9. Diagram illustrating how a basic genetic algorithm (GA) operates
in the context of evolving parameter settings for an agent-based model. Each
individual ij represents one configuration of parameter settings.

fA is by far the more appropriate measure to use. Why is this? The fitness function must

not only identify the desired behavior we are searching for, but it must also help to guide

the search process toward its goal. In the case of fA, the algorithm would have little choice

but to keep choosing new parameters randomly until it happened to find a setting which

caused the wolf population to reach exactly 0; this is akin to looking for a needle in the

proverbial haystack. Measure fB on the other hand, provides additional feedback to the

search algorithm; a relatively low number of wolves suggests a more promising region of

the search space to investigate, whereas parameters that yield an extremely high number of
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wolves suggest a region to avoid. The fitness function needs to provide a “search gradient”,

which assists the search algorithm in moving toward local (or potentially global) optima in

the search space. A good fitness function provides a measure of how close a set of parameters

is to achieving the target behavior (in this case, extinction). One must choose a measure

that both provides a wide range of values (so it can serve to usefully discriminate between

the goodness of different parameter settings) while at the same time is strongly correlated

with the actual behavior which one is trying to elicit. Specifically, for the fA (“small final

population is better”) fitness function to be useful for improving the efficiency of the search

for extinction, it must be the case that small-population-outcome parameter settings are

more likely to be near (in the parameter space) to extinction-outcome parameter settings

than large-population-outcome parameter settings are. This seems intuitive, and in fact an

examination of a small subspace of the fitness landscapes for these two measures (shown in

Figure 3.10 confirms that this is so.

As an additional point about these measures, in order to capture the behavior of “even-

tually the wolves go extinct”, one would wish to choose the time limit T large enough to

be confident that the wolf population has stabilized and will continue to thrive or will have

gone extinct before that time. However, there are (at least theoretically) conditions where

even after millions of time steps of stable population dynamics, a series of chance events

could cause the wolves to go extinct. And choose T relatively small, but sufficiently large

enough that one posits that the wolves might go extinct under some conditions. One might

also wish to search for parameters which cause the wolves to go extinct only after a certain

amount of time Tlimit has passed. More subtle behaviors like this are more challenging to

quantify, but not insurmountable. In this case the fitness function must reward wolf survival

up to a certain time, but then reward extinction after that point. The primary difficulty
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Figure 3.10. These heatmaps show a two-dimensional slice of the eight-
dimensional fitness landscape for the Wolf Sheep Predation model under two
different fitness functions to search for the extinction of the wolf species. The
upper plot fitness function uses the number of wolves remaining, which pro-
vides a reasonable gradient which can lead the genetic algorithm toward the
extinction zone. The lower plot fitness function simply measures whether the
wolves are extinct or not, and thus provides no information that the search
algorithm can exploit.
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here is that one must be careful not to let one reward measure outweigh (or conflict with)

the other. Minimizing the difference between the average population after Tthreshold and

the average population before Tthreshold may not suffice. This could lead to behavior where

extremely large populations that decline and settle at a lower equilibrium, which may score

better on the objective function than situations where a small population eventually dies off.

When working with genetic algorithms, one learns fairly quickly that you often “get what

you search for.” But equally often you find that what you searched for wasn’t actually what

you were trying to find.

It turns out we can avoid the problem in this specific case by combining sub-measures for

two incommensurate quantities. One sub-measure (SM1) could be the number of steps until

wolf extinction, or 0 if the wolves never died out. If we find parameter settings that cause the

wolves to go extinct, this sub-measure should help drive the search toward parameters that

take longer to go extinct. However, this sub-measure provides no fitness gradient for finding

wolf extinction in the first place, so we would like to combine this with a measure similar to

fA above, which searches for minimal wolf population, and thus may help us find extinction.

But we must be careful not to search for minimal wolf population too soon in the run, or

this sub-measure will be in conflict with SM1. So for SM2 we should choose a time later

than Tthreshold to measure the wolf population. Notice that we wish to minimize SM2 while

we wish to maximize SM1. Thus, for our combined behavioral measure we should minimize

SM2−SM1 (or equivalently, maximize SM1−SM2). When combining sub-measures that

compare apples to oranges (or in this case time steps to population levels), it is often good

practice to normalize the values of these sub-measures to be between 0 and 1. Thus each

sub-measure will be given equal weight in the resulting measure. We can easily normalize

SM1 by dividing by Tmax (the maximum number of steps the model is run). Normalizing
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SM2 is not so simple, however, because we do not know how large the wolf population

could be at any point in time. Thus, based on prior experience with the model, we may

estimate a reasonable maximum population value for use in normalization. Fortunately,

perfect normalization is rarely necessary. In fact, in this particular case, because of mutual

exclusion in these two sub-measures, normalization of either measure was not necessary

(more elaborate justification of this is left as an exercise to the reader).

3.4.3. Outer levels: measures of the search process

There are several additional levels in which diversity and similarity play important roles

in the evolutionary search/exploration process. However, at this point the discussion has

moved beyond the level of specifying the single objective function for quantifying behavior

to be searched for. Thus, the following is no longer relevant to the creation of quantitative

measures, but instead focuses on how the organizing principle of diversity is important within

the search process itself, as well as in understanding and interpreting search results.

3.4.4. Diversity in the GA populations

As discussed above, in population-based search mechanisms, such as genetic algorithms, the

algorithm maintains a population, or pool of individuals. The population allows the genetic

algorithm to take a multi-pronged search strategy, exploring multiple directions in the search

space simultaneously. Thus, the diversity of individuals in the population is important to

the algorithms success. The mutation operator in particular contributes to the diversity

of the population, as higher mutation rates lead to more variation among individuals in

the population. Selective pressure is a force that counteracts diversity. Some individual

have better “fitness” than others, and are thus more likely to be selected for reproduction.
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The more biased the search algorithm is toward the reproduction of fitter individuals, the

greater the “selective pressure”. As a result certain individuals become overrepresented in

the population, and strong selective pressure can lead to the population to converge. The

crossover (or recombination) operator can actually contribute to both diversity and homo-

geneity within the search. Over short time periods, crossover can produce variation by

creating novel combinations of genes from individuals in the existing population. However,

over long time periods, even in the absence of selective pressure, repeated crossover without

mutation will eventually lead the population to converge. However, the population also im-

plicitly acts as a measure of how promising a certain area of the search space is; better areas

are more likely to be better represented within the population. Thus, the genetic search pro-

cess must maintain a balance between population diversity and selective pressure. Diversity

promotes broader exploration of the search space, by exploring more regions simultaneously,

even if they may appear relatively unpromising at first. Selection promotes exploitation of

the currently most promising regions of the search space, by concentrating population in

those regions and thus investigating those regions more thoroughly (and fine-tuning good

solutions into better ones). Beyond the standard mutation and crossover operators, some

have also proposed explicit mechanisms (such as niching [Mahfoud, 1995; D. E. Goldberg,

1989], Random Immigrants [Grefenstette, 1992b], Triggered Hypermutation [Cobb, 1990],

and others [Ursem, 2002; Muhlenbein, 1991]) to help maintain diversity in GA populations,

and thus prevent premature convergence on suboptimal solutions. Such techniques may

prove useful in the QBME context, but this thesis does not explore their use, which would

add an unnecessary level of complication to the basic process. However, incorporating ad-

ditional diversity maintenance mechanisms into the search process would be a relatively

straightforward modification that might provide modest gains in search efficiency.
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3.4.5. Variation within search results

Moving up yet another level, we can look at diversity in the results from performing multiples

searches. (In this section, we are only discussing multiple executions of the same search

algorithm, but with different random seeds / initial conditions – we will discuss the use of

multiple search algorithms in Section 3.4.6 below.) First of all, it is important to emphasize

that practitioners of the QBME framework should not be satisfied with running only a single

search for a desired target behavior. Multiple searches should always be performed. Even

though genetic algorithms are often lauded for their ability to escape local optima in the

search space, it is quite possible that for any particular search, the population may converge

prematurely and stagnate in a poor area of the space. Even if a single search finds parameters

that yield great performance on the behavioral measure, it’s possible that additional searches

will find substantively different parameters that have equally good performance, or perhaps

even parameters that are significantly better. Recall that our core mission is the exploration

of model behavior, and although we are using optimization techniques to do this, sometimes

much can be learned by looking at more than just the single most “optimal” parameter

settings discovered using this process. The diversity that may occur among search results

can be broken into several distinct cases.

Case 1: The parameter settings found by the searches vary from one another, and the asso-

ciated behavioral scores also vary considerably. This is a likely indicator that the

search process was not successful, particularly if the parameter settings are fairly

spread out in the search space, and behavioral scores are mostly poor. There are

many possible causes for a failed search, including: not enough time was allowed for
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the search, there was too much noise/uncertainty in the fitness function, the trade-

off between exploration and exploitation was too far imbalanced (e.g., too high a

mutation rate, too small a population size, too strong of selective pressure, etc). If

the parameters are not generally spread out, and instead form a few clusters, this

probably indicate several local optima in the search space, which the search process

was often trapped by. Although there is no general way to guarantee escape from

local optima, sometimes they can by avoided by increasing the emphasis on explo-

ration, to prevent premature convergence of the search algorithm’s population. On

the other hand, while classic optimization researchers view local optima as a bane

to be avoided, discovering the locations of local optima in the parameter-space of

an agent-based model may actually be useful/informative. Modelers may wish to

investigate why, in each local optima, did the combination of parameter settings

lead to a higher behavioral measure than the nearby parameter settings.

Case 2: The parameter settings found by different searches can be different, but they all

yield similar scores on the behavioral measure. Similar to case (1) above, if there

is clustering of the parameter settings, this could indicate several local optima with

similar fitness levels. Also as above, modelers would wish to know about these

multiple optima, and explore the model behavior more thoroughly in each identified

region of the space. If the parameter settings are spread out, this may indicate

a large “plateau” in the fitness landscape. That is, rather than a single point in

the search space that yields high fitness, there could be a range of settings for the

parameters which each elicit the target behavior equally well. For instance, changes

in certain parameters may not impact the behavior. In this case, looking at the

distribution of search results can be helpful for identifying these “robust” regions of
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the parameter space, as well as identifying which model parameter the behavior is

more or less sensitive to.

Case 3: The parameter settings vary only a little, but the behavioral scores are substantially

different. This is not a particularly common scenario, but may stem from a number

of possibilities. A) It may indicate that in the “good” region of the parameter space

the fitness function is quite noisy, and running additional replicates of the model in

this region is necessary to get a more accurate estimation of the behavioral measure.

(It may also indicate that the method of averaging for the fitness function was poorly

chosen, with significant outliers affecting the measurement.) B) It may indicate that

the searches were consistently able to find the same “good” region of the parameter

space, but that in some cases the searches were unable to fine-tune their search

results to reach the even better fitness levels that some of the searches happened to

achieve. This could be symptomatic of too high a mutation rate, or other factors

that encourage exploration too highly, at the expense of exploitation/fine-tuning.

In each of these cases, it is helpful to examine the diversity among search results on

a parameter by parameter basis, as often the settings for certain parameters are relatively

invariant among the results, whereas others vary widely. This can aid in the identification of

which parameters are actually important for eliciting the target behavior, and other param-

eters which have negligible impact. In fact, it was this observation the diversity of settings

among different model parameters which led to the discovery of a bug in the published Ar-

tificial Anasazi model, as discussed in more detail in Chapter 6. Variation among search

results will arise in several of the case studies in following chapters, and the meaning of this

variation will be interpreted more specifically in those contexts.
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3.4.6. Variation resulting from multiple search methods

While running multiple repetitions of the same search algorithm is a good idea, for additional

confidence that a good solution has not been missed, it may be wise to try several different

search algorithms (or different parameterizations of the same search algorithm) when explor-

ing a model’s behavior. For a specific algorithm, search parameters (such as population size,

mutation-rate, crossover-rate, etc) can be varied. Within the family of genetic and evolution-

ary algorithms many variants exist, including varying choices for genetic operators, selection

methods, and population replacement mechanisms. One could also compare search results

with other (non-genetic) meta-heuristic search algorithms such as hill climbing, simulated

annealing, particle swarm optimization, Tabu search, or others.

Thus, moving up yet another level, let us consider the situation of observing different

results when employing different search methods. First of all, this could arise for the same

reasons as variation occurring among search results using the same method (described in

the previous subsection). However, if using search method A consistently finds results in a

certain region of the parameter-space, whereas search method B consistently finds results

in another region, when both search methods are using the same objective function, then

additional explanation is necessary. In this case, it could indicate biases among the search

methods.

For instance, using the same objective function but with fewer sampling replicates may

result in a noisier fitness signal, which could cause a search algorithm to prefer noisier regions

of the space (which can occasionally give very high fitness values, although the average fitness

behavior is poor. One could argue that this is a difference in objective function, rather than

search algorithm, but in fact a similar situation arises when one search method uses fitness
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caching, while another does not. This subject is discussed in much greater detail in Chapter

8, but essentially caching prevents additional re-sampling replications, which might give a

better approximation of the fitness in that region.

As a second example, consider two search algorithms that are identical except for the

mutation mechanism. Assume a real-valued genes, on an interval between 0.0 and 1.0,

and using additive Gaussian mutation. That is, a gene with current value of x will, after

mutation, assume a value of xnew = x + N(0, σ2) where N(0, σ2) is a value drawn from a

normal distribution with mean 0 and variance σ2. But what if xnew is less than 0.0 or greater

than 1.0 – this can happen regardless of the variance σ2, since the normally distributed

random variable can assume arbitrarily high or low values (albeit with small probability)?

Some fix is required, to constrain xnew in the desired range. Here are three possibilities:

(1) clipping: if xnew < 0, set xfixed to 0 (and if xnew > 1 set xfixed to 1).

(2) mirroring: take whatever amount xnew is out of range, and move it that far from

the boundary in the opposite direction. e.g., if xnew = −0.3, xfixed would be 0.3,

and if xnew = 3.1, then xfixed would be 0.9 (after mirroring multiple times).

(3) rejection-based sampling: if xnew is out of range, regenerate xnew = x + N(0, σ2)

until xnew is in range.

Note that the first of these has a fairly strong bias toward genes taking on the extrema

values of 0 and 1, whereas the other two methods do not. Although the word “bias” often

has negative connotations, in some cases this bias could indeed be beneficial for the search

process, since the extrema of a parameters range are commonly (though not always!) settings

that cause the most or least of a certain behavior to occur. However, the point is that search

mechanisms using different mutation operations may lead the search to sample certain areas
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of the parameter space more often than other areas, and this could lead to differing results

from different search mechanisms.

These were just two illustrative examples, but in fact the situation is more widespread.

It turns out that all search methods are in some way biased in their approach to sampling

the search space, with the exception of random search, which samples uniformly at random.

Again, the word “bias” must not be perceived as negative here – in fact, all intelligent search

techniques depend on these sampling biases, which take advantage of structure in the fitness

landscape in order to outperform random sampling of the space. Thus, there is always the

potential for two search methods to be lead down paths toward different regions of the search

space, and thus tend toward different results. In such cases, the region of the parameter space

that give superior fitness values is generally preferable, but the regions identified by other

search mechanisms may deserve examination as well. However, in practice, a large variety of

search techniques are likely converge to the same high-performing region of the search space,

if given enough time, and appropriate search parameters.

3.4.7. Variation of search results from differing specifications

There is one final method of exploration in the QBME framework that we haven’t touched

on yet. That is, by comparing the results from performing searches with varying specifi-

cations, we have the potential to learn many interesting things about the model, or about

differences between models. This approach can be broken down into three cases: search-

ing different parameter ranges, and searching different models, and searching for different

objective functions.

Searching different parameter space ranges. One approach is it to search for the same

objective function, but in different subspaces of the full parameter space. By constraining
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the search process to a certain range of parameters, one can discover the parameters within

that range that maximize the target model behavior. By changing to a different range of

parameters, and searching again, one can compare a) the parameter settings found, and

b) the extent to which the behavior was manifested in each region. This is probably best

illustrated by a couple of examples.

In the Wolf Sheep Predation model, a parameter called grass? determines whether the

grass (food source for the sheep) is limited in supply and regrows over time, or whether the

grass is assumed to be unlimited. Including grass growth/consumption in the model adds

another trophic level to the model’s food chain, and generally produces much more stable

population dynamics than in the purely two-species variant. However, one may wonder

whether there are choices for the other parameters of the model such that the inclusion of

grass would cause the population dynamics to be even less stable than in the other case

(perhaps using a measure of the frequency of wolf/sheep extinction). To examine this, the

parameter space may be split into two subspaces: one where the grass is limited, and one

where the grass is unlimited. All other model parameters (initial-number-sheep, initial-number-

wolves, etc) are unconstrained. Thus, two separate searches for population instability can be

run – one in each subspace – and the result will be the most “instability-causing” parameters

in each case. These parameters can then be compared, both to see which scenario permitted

greater instability, and also to see whether similar parameter settings contributed to this

in both cases. As a second example, in the NetLogo Fireflies model there are two general

strategies (”advance” and ”delay”) which the fireflies can use to attempt to synchronize with

one another. One could search the parameter space for each of these cases, to determine

which of these strategies permits the quickest convergence to synchronization under varying

other conditions (cycle length, length of flashes, etc). This same idea is applied in Chapter
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5 in the real-world setting of examining the effects of different social network topologies on

viral marketing campaigns. In this case, the different subspaces being examined correspond

to the different social network structures that the model can be initialized with.

Searching different models. Alternatively, one can apply the same objective function to

explore two (or more) distinct agent-based models. For instance, suppose that two differ-

ent agent-based models are proposed by different teams of researchers to explain a certain

phenomenon, such as the boom/bust cycle of the stock market. To explore the range of

behavior these models are capable of, one might construct a measure of market volatility

that can be applied to each model. Searching for the parameters that give the most (or

least) volatile behavior can help us compare the models strengths and weaknesses. Using

a calibration measure, we can search for parameters that cause each model to best align

with an empirical dataset. On the other hand, we can perform sensitivity analysis on each

model separately, and thus compare how sensitive/robust each of the models is to changes

in its parameters. Even though each of the models may have a different set parameters,

by construction behavioral measures that can equally be applied to different models of the

same phenomenon, we can use QBME methodology to explore those models in tandem. We

will see an example of this in the case study in Chapter 4, which compares two models of

collective animal movement to see the extent to which each is capable of producing a certain

behavior.

Searching for different objective functions. This approach is one of the most obvious

extensions of the previous discussion. While finding parameters that yield a certain behavior

is informative, the development and maximization of single behavioral measures really only

scratches the surface of the query-based model exploration paradigm’s potential. It’s possi-

ble to search (sequentially or in parallel) for a variety of behaviors of interest, and thus form
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a larger mental map of the parameter space. Similar-seeming behaviors which you might

believe to be well-aligned may result from qualitatively different parameter settings. In par-

ticular, it’s useful to look at the degree to which behavior-maximizing parameters coincide in

the space. For instance, does searching for parameters that yield greatest wolf longevity also

yield the highest average wolf populations? Intuitively one might feel these are connected,

but one’s intuitions about ABM behavior can often be wrong. On the other hand, one might

discover that similar parameter settings maximize two seemingly unrelated behaviors, raising

new and unexpected questions. By performing searches for different behaviors in turn, and

then comparing the results, one can both refine existing theories and form new hypotheses

to explain how the model’s parameters affect model behavior.

3.4.8. Iterative exploration

In order to integrate the QBME framework with more typical exploratory model analysis,

a few words about applying it in practice will be helpful. The most important thing is that

model exploration is an iterative process that builds on itself. One doesn’t start with a

single question, design a measure to attempt to answer that question, run a search, draw

a conclusion, and then be “done” exploring their model. The exploration process is much

longer, richer, and messier than that. Modelers usually start with a variety of questions in

their mind, though they may focus on one or two at first. However, as they learn more about

model behavior, they continually refine the questions they are asking about the model, and

the results of each search will provide insight into certain questions, while opening up new

questions about model behavior. And oftentimes the questions are not precisely formed:

“Does the model ever do something crazy?”, “Why doesn’t it settle down to an equilibrium

more often?”. As mentioned above, QBME was never intended to replace other methods of
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exploration - rather it complements them by providing a way to answer certain types of mod-

eler questions that were very difficult to answer previously. Not all questions are amenable

to the QBME approach. Sometimes running the model with a few carefully human-chosen

parameters can answer a question much more effectively than a lengthy automated genetic

search. However, you can often gain at least partial insight into even the hardest or most

nebulous questions through an appropriate (and sometimes highly creative) transformation

of the question into a type that QBME can answer. At present, this transformative question

re-phrasal process is more of an art than a science. However, I do not feel that “sciencifying”

this process is the most pressing concern – that will come with time and experience. Rather,

I believe the greatest hurdle to integrating QBME in practice is is simply to get people shift

their exploratory paradigm, so that it occurs to them to try rephrasing their questions into

queries that automated search-based exploration could shed light on. Simultaneously, new

low-threshold tools (see Chapter 10) are needed to make the process easy enough to learn

and convenient enough to use in practice.
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CHAPTER 4

Case Study 1: Flocking/Swarming Behavior

“Birds of a feather flock together.”
– Ancient Proverb

“You can’t think about thinking without thinking about thinking
about something.”

– Seymour Papert

I have always loved Seymour Papert’s quote about “thinking about thinking”, and I think

it can be usefully adapted to many other situations, if broadly construed. Specifically, you

can’t think about exploring agent-based models in general, without thinking about exploring

some specific agent-based model. Hence the necessity of case studies. This chapter provides

a first case study of using genetic algorithms to explore behavior in two agent-based models

of flocking/swarming behavior (now frequently cataloged under the more general moniker

of “collective animal motion” models). As described in Chapter 1, the case study chapters

have been written to stand on their own, and thus a small amount of repetition regarding

motivation for the work and background literature is to be expected, and certain elements

of the QBME framework are restated in this context. This chapter demonstrates the use of

computer-aided model exploration, showing how evolutionary search algorithms can be used

to probe for several qualitative behaviors (convergence, non-convergence, volatility, and the

formation of vee shapes) in two different flocking models. This is accomplished by using
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BehaviorSearch, the new software tool I created for performing parameter search on ABMs

created in the NetLogo modeling environment. Of particular note in this chapter is the

importance of recognizing and interpreting the variance in parameter settings, as well as the

use of exploratory methods to compare across models. The results regarding the performance

of the genetic algorithm relative to other search algorithms are less decisive – a matter that

will be returned to in Chapter 9.

4.1. Motivation

Agent-based modeling is a powerful simulation technique in which many agents interact

according to simple rules resulting in the emergence of complex aggregate-level behavior.

This technique is becoming increasingly popular in a wide range of scientific endeavors due

to the power it has to simulate many different natural and artificial processes [S. Bankes,

2002; Bryson et al., 2007; North & Macal, 2007; Wilensky, 2001]. A crucial step in the

modeling process is an analysis of how the system’s behavior is affected by the various model

parameters. However, the number of controlling parameters and range of parameter values

in an agent-based model (ABM) is often large, the computation required to run a model is

often significant, and agent-based models are typically stochastic in nature, meaning that

multiple trials must be performed to assess the model’s behavior. These factors combine to

make a full brute-force exploration of the parameter space infeasible. Researchers respond

to this difficulty in a variety of ways. One common approach is to run factorial-design

experiments that either explore model behavior only in a small subspace or explore the full

space but with very low resolution (which may skip over areas of interest). A second common

approach is to vary only a single parameter at a time, while holding the other parameters

constant, and observe the effect of changing each parameter individually. However, because
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ABMs often constitute complex systems with non-linear interactions, these methods risk

overlooking parameter settings that would yield interesting or unexpected behavior from the

model.

As an alternative, we argue that many useful model exploration tasks may instead be

productively formulated as search problems by designing appropriate objective functions,

as we will demonstrate by example in the domain of simulated flocking behavior. We also

introduce a new software tool (BehaviorSearch), which we have created for the purpose of

searching/exploring ABM parameter spaces. Using BehaviorSearch, we offer a case study

showing how search-based exploration can be used to gain insight into the behavior of two

ABMs of flocking that have been implemented in the NetLogo modeling environment [Wilen-

sky, 1999; Tisue & Wilensky, 2004]. We also provide a comparison of the performance of three

different search algorithms on several exploratory tasks for these two ABMs. In particular,

we will show how genetic algorithms and hill-climbing can be used to discover parameter

settings for these models that yield behaviors such as convergence, non-convergence, volatil-

ity, and specific flock shape formation. This approach can be useful for researchers to better

understand the models they have created, the range of behavior their models are capable of

producing, and which parameters have large impact on which behaviors. Flocking behaviors

were chosen for this case study because flocking is a well-known example of a successful agent-

based model, and can demonstrate a wide range of behaviors depending on the controlling

parameters.
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4.2. Related Work

Rather than using a full factorial experiment design for sampling points in the space, sev-

eral more sophisticated sampling algorithms exist (e.g., Latin hypercube sampling, sphere-

packing). These algorithms stem from the design of experiments (DoE) literature or more

specifically the more recent design and analysis of computer experiments (DACE) literature

(see [Sanchez & Lucas, 2002] for a discussion of applying DACE methodology to ABMs).

While appropriate experimental designs provide efficient sampling of the space in some sit-

uations, this is a separate direction from the search-oriented approach that we are pursuing

here. In particular, we are interested in the use of genetic algorithms [J. Holland, 1975]

(GAs) to search the ABM parameter spaces for behaviors of interest. Genetic algorithms

have proven to be quite successful on a wide range of combinatorial search and optimization

problems, and are thus a natural meta-heuristic search technique for this task. There is prior

work on parameter-search and exploration in ABM, and considerably more on the problem

of parameter-search in general.

Calvez and Hutzler [2005] have previously used a genetic algorithm (GA) to tune param-

eters of an ant foraging model, and discuss some of the relevant issues for applying GAs to

ABM parameter search. However, in this case, the GA’s performance was not compared to

any other method, and the effectiveness of GAs for the ABM parameter search task has not

been thoroughly investigated. Our present work contributes toward this goal. Specifically,

we compare the performance of a genetic algorithm against a stochastic mutation-based hill-

climber, as well as uniform random search, to serve as a baseline for comparison. We also

explore a different domain (i.e. flocking models rather than ant foraging), and thus provide

another perspective on the issue of automated model exploration.
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Genetic algorithms have also been used to attempt to calibrate agent-based models with

aggregate-level equation-based models as part of the SADDE methodology [Sierra et al.,

2004] for designing ABMs. Our current case study places an emphasis on exploration, as

opposed to calibration or model design. The modeler may pose a question about the model’s

behavior which are potentially interesting, and the distribution of search results should an-

swer that question, and may give additional insight into the interaction between parameters

as well.

Other methods of exploration (besides genetic algorithms) have previously been consid-

ered. Most notably, Brueckner and Parunak [2003] proposed a meta-level multi-agent system

to adaptively select points in the parameter-space to evaluate. This swarm-based approach

resembles particle swarm optimization [Kennedy et al., 1995] in that it uses a population of

agents that combine global and local information to choose a direction to move in the search

space, but it also considers whether to run additional simulations to improve the confidence

of results at locations in the space. Brueckner and Parunak also mention in passing that

genetic algorithms would be an appropriate choice for this type of search problem, but they

did not follow this path, and only offer results from the novel multi-agent optimization algo-

rithm they proposed. A comparison of genetic algorithms with this, and other swarm-based

approaches, would be an interesting area for future work.

Genetic algorithms have also been employed in parameter-search problems which are

not ABM, but closely related fields. For instance, genetic algorithms have been applied to

search for rules in cellular automata (CA) that will produce a certain behavior (e.g., density

classification) [Mitchell et al., 1996]. Cellular automata models could be considered a highly

restricted case of agent-based models, and the cell state transition rules could perhaps be

considered the parameters of such models, in which case this would constitute searching the
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parameter space. However, the density-classification task is arguably closer to a multi-agent

system coordination problem, rather than an agent-based model; the goal here is to get a

set of artificial agents (cells) to work together to solve some problem, not to simulate some

natural phenomena. Also, while CA rules are naturally represented by binary switches,

agent-based simulations tend to have a mix of parameter types, with numeric parameters

being the most common.

Our present investigation is also inspired by Miller’s work on active non-linear testing

[Miller, 1998], which demonstrated the use of meta-heuristic optimization (genetic algorithms

and hill climbers) for searching the parameter-space of the World3 simulation, a well-known

system dynamics model (SDM). Our work departs from Miller’s in two respects: 1) model

stochasticity (which is less frequently present in SDMs) is not addressed in those experiments,

and 2) the characteristics of search spaces produced by agent-based models likely differ from

those which are produced by aggregate equation-based models.

4.3. Methods

4.3.1. Flocking Models Overview

For our case study we explore the parameter-space of two agent-based models, searching

for a variety of target behaviors. The two ABMs are the Flocking model [Wilensky, 1998]

(denoted as Flocking) and the Flocking Vee Formations model [Wilkerson-Jerde, Stonedahl,

& Wilensky, 2010] (denoted as Flocking VF ). While the parameters of these two models are

discussed briefly below, an in-depth discussion of these models is beyond the scope of this

document. Thus, we invite interested readers to examine the models themselves, which are

both available in the NetLogo models library.
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Flocking closely resembles the seminal ABM of swarming behavior in artificial birds (play-

fully dubbed “boids”) that was introduced by Reynolds as a way to create life-like cinematic

animation of flocking birds or other flying/swimming/swarming creatures [C. W. Reynolds,

1987]. The behavior of each “boid” is influenced by three basic rules, which provide impetus

toward alignment, coherence, and separation. The relative influences of each are controlled

by the parameters max-align-turn, max-cohere-turn, and max-separate-turn, respectively. Ad-

ditionally there are parameters controlling the distance at which birds have knowledge of

other birds (vision), and the minimum distance of separation which birds attempt to maintain

(minimum-separation). For this first model, exploratory search tasks include the discovery of

parameters that yield quick directional convergence (Section 4.4.1), non-convergence (Section

4.4.2), and volatility of the aggregate flock’s heading over time (Section 4.4.3).

Flocking VF is based loosely on an extension of Reynolds’ work that was proposed

by Nathan and Barbosa [2008], attempting to produce the vee-shaped patterns often ob-

served in large migratory birds, such as Canada geese. Flocking VF has 8 controlling

parameters, which account for fine-grained control over bird vision (vision-distance, vision-

cone, obstruction-cone), takes into account benefits of “updraft” from nearby birds (updraft-

distance, too-close), as well as flying speeds and acceleration (base-speed, speed-change-factor,

and max-turn). The final exploratory search task is to seek parameters that best yield V-

shaped flock formations, in both Flocking and Flocking VF (Section 4.4.4).

4.3.2. Search Algorithms

For each search task, we tested three different search algorithms: uniform random search

(RS), a random-mutation hill climber (HC), and a genetic algorithm (GA). For all of the

search methods, each ABM parameter’s value was encoded as a sequence of binary digits



138

(bit string) using a Gray code1, and all the parameters’ bit strings were concatenated to

create a string that represents one point in the parameter-space. A bit string is evaluated by

decoding it into the ABM parameter settings, and running the model with those parameters.

The RS method simply generates one random bit string after another, and in the end

chooses the one that best elicited the desired model behavior. RS is a naive search tech-

nique, which we included as a baseline for comparison, to determine whether using more

sophisticated meta-heuristics (such as the HC and GA) were indeed helpful.

Our HC is primarily a local search algorithm. It starts with a random bit string (s). A

new string (snew) is generated from s (each bit of s gets flipped with probability 0.05, which

is the mutation-rate). If snew is better than s (generates behavior that judged closer to the

desired target behavior), then the HC chooses snew as the new s, and the process repeats.

If the HC becomes stuck (after 1000 unsuccessful move attempts), it will restart at a new

random location in the search space, which makes this a quasi-local search method.

Our GA is a standard generational genetic algorithm [J. Holland, 1975], with a population

size of 30, a crossover rate of 0.7, and a mutation rate of 0.05, using tournament selection

with tournament size 3. The GA is a more sophisticated search mechanism than HC or

RS, and there are several reasons to believe that it might perform better. First, the GA

is population-based, which allows it to explore multiple regions of the space simultaneously

(more of a global search technique). Second, genetic algorithms have previously been shown

to perform well on a variety of nonlinear and multi-modal search/optimization problems.

Third, genetic algorithms (like the biological processes of evolution that inspired them) often

have a way of coming up with creative or unexpected solutions to a problem, which humans

1A high-order binary encoding requires flipping 4 bits to change from 7 (01112) to 8 (10002). In a Gray
code, consecutive numbers only require a single bit flip, thus creating a smoother mapping from numbers
into binary search spaces [Caruana & Schaffer, 1988; Whitley, 1999].
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would not have considered. However, depending on how the search space is structured,

simpler approaches may be more effective. For example, it was shown in one case that a HC

performed better on a problem that was specifically designed with the expectation that GAs

would work well on it [Mitchell, Holland, & Forrest, 1994]. One important consideration

is whether there are so-called building blocks in the solution-space, which the GA is able

to discover and combine (via genetic crossover) to form better solutions. Phrased at the

level of the agent-based model, this question becomes: are there certain combinations of

several parameter settings, each of which partially produce desired target behavior, and

when combined together produce that behavior even more strongly? If so, the GA may be

able to take advantage of that structure in the search space to efficiently find solutions. This

notion of building blocks may appear counter to the earlier argument that GA’s do well in

multi-modal nonlinear search spaces, but it is not a paradox. One could imagine a perfectly

decomposable problem, where the fitness of each individual is exactly the sum of the fitness

contributed by each building blocks, and there are no overlapping building blocks; this would

result in a unimodal function with certain linearly additive properties. However, it is possible

for complex nonlinear functions to also contain building blocks, where the building blocks

may overlap and interact with each other in nonlinear ways to form rough multi-modal

fitness landscapes. For one class of complex search functions designed specifically to exhibit

building block structure, see Holland’s [2000] hyperplane defined functions (hdf’s).

The objective function (or “fitness function” in the parlance of evolutionary computation)

was always averaged across 5 model runs (replicates) with different random seeds, to reduce

variability stemming from model stochasticity. While this variability is essentially “noise”

from the search algorithm’s perspective, it is simply reflecting the fact that running the ABM

results in a range of behavior depending on the initial placement of the birds. Our objective
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functions are attempting to characterize the presence or absence of a certain behavior on

average, and short of running the simulation with every possible initial condition (which is

impossible), there will always be some uncertainty about the objective function measure.

Taking the average value from several replicate runs of the simulation, however, reduces this

uncertainty and smooths the search landscape.

The objective functions were different for each task, and will be discussed individually

in each of the investigations below (Sections 4.4.1-4.4.4). For efficiency, objective function

values were cached after being computed.2 The search algorithms were stopped after they

had run the ABM 12000 times. Each search was repeated 30 times (except for the volatility

exploration in Section 4.4.3, which was repeated 60 times for improved statistical confidence),

to evaluate search performance and ensure that search findings were not anomalous. To

perform these searches, we use the software tool BehaviorSearch [Stonedahl & Wilensky,

2010a], which will be discussed in greater detail in Chapter 10.

4.4. Explorations

4.4.1. Investigation 1: Convergence

The convergence of swarm-based systems is one potential property of interest, and has been

formally studied for some theoretical cases [Cucker & Smale, 2007]. Thus, the first behavior

of interest for the Flocking model was the ability of birds starting at random locations and

headings to converge to be moving in the same direction (i.e. directional, not positional,

convergence). In order to make the search process effective, we must provide a quantitative

2The goal of caching is to avoid repeating expensive computations. However, because the model is stochastic,
re-evaluating points in the search space could lead to different results than the cached values, meaning that
the search process is affected by caching. For further discussion of noise/uncertainty and fitness caching, see
Chapter 8.
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measure to capture the rather qualitative notion of convergence. This quantitative measure

(the objective function) will provide the search with information about how good one set of

parameters is, relative to another, at achieving the goal. Specifically, we would like to find

parameters that yield very little variation between birds’ headings. Thus, we will attempt

to minimize the following objective function:

fnonconverged = stdev({vx(b) | b ∈ B}) + stdev({vy(b) | b ∈ B}) (4.1)

where vx(b) and vy(b) are the horizontal and vertical components of the velocity3 of bird b,

and B is the set of all birds. The standard deviation (stdev), which is the square root of

the variance, serves as a useful measure of the variation for velocity, and we must apply it in

both the x and y dimensions. A value of fnonconverged = 0 would indicate complete alignment

of all birds. We measure fnonconverged after 75 ticks (model time steps). While 75 ticks is

effective here for finding parameter settings that cause the flock to quickly converge, if we

were instead interested in the long-term behavior of the system, a longer time limit would

be more appropriate. In terms of the query-based model exploration (QBME) framework

for formulating measures to quantify behavior (see 3.2), we are using intra-agent measures

of vx and vx that are being combined by an agent group level stdev measure (that quantifies

the diversity of some property of agents in the group). At the temporal level of analysis,

we are discarding behavioral information from the beginning of the run, and only measuring

behavior at the time-slice t = 75. (For a lengthier discussion of the QBME conceptual

framework for measure formulation, refer back to Chapter 3.)

3In NetLogo it is usually more natural to think in polar coordinates or “turtle geometry”, where each bird’s
velocity is represented by its speed and heading (angle). However, taking the stdev (or mean) of a set of
angles is problematic due to the discontinuity between 359 degrees and 1 degree, so we expressly split the
velocity into Cartesian components to avoid this issue.
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Figure 4.1. Search performance for the convergence task, comparing how effi-
ciently the GA (genetic algorithm), HC (hill climber), and RS (random search)
can find parameters that cause the flock to quickly converge to the same head-
ing. (Error bars show 95% confidence intervals on the mean.)

The plot of search progress (Figure 4.1) shows that on average the HC may have found

better model parameters early in the search, but in the end the GA’s performance was

superior (t-test, p < 0.01). Both GA and HC significantly outperformed random search.

The best parameters found in each run are displayed in Figure 4.2. Examining the resulting

parameters is a key step of the QBME process. As modelers we are often interested in the

extent to which the model exhibits the behavior we have quantified, but we are often even

more curious about what settings of the parameters conjured up such behavior, because

this information can lead us to causal or mechanism-based explanations for the behavior.

Furthermore, it is preferable to look at the collection of parameters returned by a number

of searches, rather than focusing only on the single best parameter setting discovered. As
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Figure 4.2. LEFT: Distribution of model parameter settings found to cause
quickest convergence in each of the 30 GA searches. All box-and-whisker plots
presented in this chapter show the median line within the lower-to-upper-
quartile box, with whiskers encompassing the remainder of the data, apart
from outliers which are marked with x’s. RIGHT: Visualization of the flock
(after 75 model steps) using the best parameters the GA discovered.

discussed in the QBME framework (in particular, see Section 3.4.5), diversity among the

parameters returned by the searches can provide additional insight into model behavior. In

this case, Figure 4.2 shows us that it is crucial for birds to have long-range vision, and that

even a small urge to cohere is detrimental to convergence. On the other hand, the wide spread

for max-separate-turn suggests that convergence is not very sensitive to this parameter (given

the other parameter settings). Often these observations align with our intuitions about the

model – for instance, a larger vision naturally allows information to travel more quickly

between agents, and thus is beneficial for convergence to a common state.

Figure 4.2 also shows one possible converged state from running the model using the best

parameters found by the GA.
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Figure 4.3. LEFT: Distribution of model parameter settings found to cause
non-convergence in each of the 30 GA searches. RIGHT: Visualization of a
non-converged flock using the best parameters the GA discovered.

4.4.2. Investigation 2: Non-convergence

Next, we probed for parameter settings that cause the birds not to globally align. For this

task, we simply maximized the same objective function we minimized in Section 4.4.1. This

task turned out to be rather trivial, as all three search methods (GA, HC, and RS) very

quickly found parameter settings that yielded little or no flock alignment. That such behavior

is rather common in the parameter space is illustrated by Figure 4.3, which shows a wide

distribution of best parameters. The results suggest that for non-convergence, it is helpful

for birds to have a low-to-medium vision range, desire a large amount of separation from

each other (minimum-separation), and act to achieve the separation (non-zero max-separate-

turn). Digging deeper, the results tell us that it is the relationship between parameters that

matters; if minimum-separation is larger than vision each bird will seek to avoid any other

bird as soon as it sees it, as separation takes precedence over the align/cohere rules.
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4.4.3. Investigation 3: Volatility

Our third experiment sought parameters for the Flocking model that would yield the most

volatility (or changeability) in global flock heading. In contrast to Sections 4.4.2 and

4.4.1 above, we are now interested in looking at model behavior across time, rather than

static snapshots of the model state. Volatility is an important, though general, concept

in agent-based modeling. In this instance, we are specifically interested in the volatility

of an aggregate-level property (group heading) over time. In a model of collective animal

motion, the type of volatility we seek relates to coordinated flock/school movement: how

quickly can the entire group respond and change from moving in one direction to moving

in another? Behavior of this type is important in real-world flocks, swarms, and schools for

predator and/or obstacle avoidance. To seek volatile flock behavior, we attempt to maximize

fvolatility, as defined in (4.4).

vx(t) = mean({vx(b) | b ∈ B} at tick t (4.2)

vy(t) = mean({vy(b) | b ∈ B} at tick t (4.3)

fvolatility = stdev(vx(t) for t = 400..500) + stdev(vy(t) for t = 400..500) (4.4)

Again, on average the GA was slightly more successful than the HC in eliciting flock

heading volatility, and both significantly outperformed random search (Figure 4.4). Only

5 out of the 60 GA searches’ best parameter settings had a non-zero value for minimum-

separation, indicating that birds flying close together is a key factor for maximal volatility.

Long-range vision, and large effects of max-align-turn and max-cohere-turn are also important

(see Figure 4.5). The flight pattern of a flock exhibiting considerable volatility is shown
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Figure 4.4. Comparison of search algorithm performance for the flock heading
volatility task. The final mean performance of the GA was better than the HC
(t-test, p < 0.05), but not substantially so. (Error bars show 95% confidence
intervals on the mean.)

in Figure 4.5. The single bird positioned at the left side in the rear is at least partially

responsible for shift in flock heading, because of the strong coherence parameter.

Despite taking the average of 5 replications, noise due to model stochasticity was still

significant. For example, the search reported finding settings yielding 0.99 volatility, but

averaging 1000 runs at those settings showed true volatility of 0.41. This fact could bias

the search toward parameters that occasionally yield very high volatility, over those that

consistently yield moderately high volatility. Both goals are potentially interesting for model

exploration; however, appropriate noise reduction methodology is a worthy subject for future

research.
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Figure 4.5. LEFT: Distribution of model parameter settings (from each of the
30 GA searches) found to cause the most volatility in flock heading. RIGHT:
Visualization of the flock after 500 model steps (also showing each bird’s path
over the last 100 steps), using the best parameters found by the GA.

4.4.4. Investigation 4: Vee Formations

The final experiment was to search both the Flocking and Flocking VF models for a more

complex behavior, which we shall refer to as veeness. Veeness measures the degree to which

birds are flying in vee, or more generally, echelon formations. Our specific questions are:

1) Do any parameter settings cause Flocking to exhibit veeness? 2) How much better can

Flocking VF do? and 3) What parameters are most important for the best vee/echelon

creation?

To calculate veeness, we first cluster all the birds in the world into separate flocks,

according to proximity (within 5 distance units of another bird in the flock) and directional

similitude (less than 20 degrees angular difference in heading). A flock with less than 3 birds

is assigned a flock veeness score of 0. Otherwise, it is calculated by choosing the optimal point
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bird and left/right echelon angles, calculated as described below. (Intuitively, the sum of the

two echelon angles is the interior angle of the flock vee.) Echelon angles are constrained to

be between 25 and 50 degrees, comprising a mid-range of echelon angles observed in nature

[Heppner, Convissar, Moonan Jr, & Anderson, 1985]) for the flock. For any candidate point

bird, the left and right echelon angles are calculated separately, by first dividing flockmates

into those to the right or left, relative to the point bird. The echelon angles are then chosen

such that they minimize the mean-squared-error difference between the echelon angle and

the angle between the point bird and all following birds on that side. Flock groupings with

echelon angles and flock veeness scores can be seen in Figure 4.8. The flocking score for the

flock is the reciprocal of the mean-squared-error value for the best “point” bird, rescaled so

that a flock in perfect echelon/vee formation has a score of 1.0. Overall veeness is a weighted

average (by flock size) of the veeness scores of individual flocks. Veeness was measured every

100 model ticks, between 1000 and 2000 ticks. Searches for both Flocking and Flocking VF

used 30 birds and the same veeness metric.

The results show that Flocking can create formations that appear only mildly vee-like at

best, but Flocking VF can (as expected) create much better vees (as shown in Figure 4.8).

For Flocking VF to produce the best vees (according to our chosen veeness metric), the vision-

cone angle should be large, perhaps roughly 3 times larger than the obstruction-cone angle,

the bird’s base-speed and max-turn angle should generally be low, but the speed-change-factor

should not be too small. We will not elaborate on specific implications of these findings for

the Flocking VF model here, but broadly argue that findings such as these can lead modelers

to a better understanding of their model by cognitively linking changes in model parameters

with the qualitative behavior being investigated.
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Figure 4.6. Comparison of search performance for the vee-shapedness task on
both the Flocking and Flocking Vee Formation models. (Error bars show 95%
confidence intervals on the mean.)

Unlike in previous experiments, the HC search method performed slightly better than

the GA (see Figure 4.6), but the difference was not statistically significant. For the Flocking

model, RS was not far behind GA and HC, indicating that the search space contains a

fairly large number of parameter settings that yield a similar level of “veeness” as the best

parameter settings that were found (which still are not very good, as we shall see). Given

this, it is unsurprising that HC and GA were roughly on par for this task. It is more of a

mystery why the GA did not outperform HC in exploring the Vee Flocking model, where good

solutions were possible, and both HC and GA significantly outperformed RS. There are a

number of possible explanations, but a reasonable hypothesis is that the search space has few

local optima where the HC would be trapped, and there is sufficient fitness gradient for the
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Figure 4.7. Distribution of model parameter settings found to yield the best
vees in the Flocking model (left), and the Flocking Vee Formation model
(right), in each of the 30 HC searches.

Figure 4.8. Visualization of a run of the Flocking model (left), and the Flock-
ing Vee Formation model (right), using the best “vee-forming” parameters
found by the 30 HC searches. Birds are shaded by flock group, dashed lines
show average flock heading relative to the “point” bird, and gray lines show
best-fit angles for right and/or left echelons of the vee formation. The numeric
“veeness” measure for each individual flock is also shown.
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HC to climb to the optimal regions of the space from many initial starting locations. Thus,

although the GA is also able to reach the optimal regions of the space, it initially spends

more time exploring unproductive areas of the search space in search of better values, rather

than climbing directly.

4.5. Conclusion and Future Work

Beyond the specific results concerning the behavior of two particular agent-based models

(Flocking and Vee Flocking), there are several more general conclusions that may be drawn

from this case study. First, evolutionary algorithms such as the GA and HC are indeed

effective means of exploring the parameter space of ABMs. Their performance was vastly

superior to RS, except in the cases where the task was too easy (e.g., nonconvergence) or

too hard (veeness in Flocking) to make substantial progress. The difficulty of the search task

relates to how dense or sparse the desired target behavior is in the search space: parameter

settings that cause the Flocking model to not converge are plentiful in the parameter space,

whereas parameter settings that cause good vee formations are either extremely rare or

nonexistent. However, note that the characteristics of the search space could be identical in

both of these cases, and whether we classify the task as “too easy” or “too hard” is merely

a matter of extrinsically chosen criteria for search success. Second, by running multiple

searches on a stochastic model and looking at the distribution of best-found parameter

settings, rather than just the single best setting for the parameters, we can uncover trends

(or at least postulate relationships) about the interactions between model parameters and

behavior. One interpretation is that we are implicitly performing a type of sensitivity analysis

on the search process for a particular behavior, but that the results of that analysis can tell

us something about the model. Note that the trends we find are unlikely to be global
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(characterizing the whole parameter space), but apply only to a local view that is focused

on regions of the parameter space where the target behavior is expressed mostly strongly.

These results also suggest several important areas for additional work. From this single

case study, we cannot determine whether genetic algorithms will generally outperform the

simpler stochastic hill climbing algorithms for model exploration tasks, or not. This chap-

ter offered a precursory comparison of search algorithm performance on these two flocking

models, but Chapter 9 will provide much more extensive performance benchmarking of two

types of genetic algorithms (generational and steady-state) relative to random search, hill

climbing, and simulated annealing, using a range of ABMs and exploration tasks. We can

also conclude from this work that additional consideration should be given to the treat-

ment of model stochasticity and noisy objective functions. While running fewer replicates of

model runs takes less time for searching, large quantities of noise can inhibit search progress;

this topic will be discussed further in Chapters 8 and 9. In general, this introductory case

study shows that the prospects are bright for using meta-heuristic search, such as genetic

algorithms, to improve model exploration and analysis. It is our hope that these promising

prospects will encourage ABM practitioners to flock toward (and eventually converge on)

new methodologies for model parameter exploration that take advantage of these ideas.
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CHAPTER 5

Case Study 2: Viral Marketing

“Advertising is the art of convincing people to spend money they
don’t have for something they don’t need.”

– Will Rogers

“Marketing is too important to be left to the marketing depart-
ment.”

– David Packard

As an extension of Will Roger’s famous quip, we may view “viral marketing” as the art

of convincing people to convince other people to spend money they don’t have for something

they don’t need. Naturally, this task is not always easy, and figuring out the best way of

approaching the problem may be very challenging indeed. Perhaps this is why David Packard

believed that the task of marketing should not be entrusted solely to marketing departments,

and recent years have shown that computer scientists have something to bring to the table

here. Specifically, this chapter will demonstrate that agent-based modeling of interactions on

social networks can provide a useful expansion to more traditional techniques of marketing

research.

One method of viral marketing involves seeding certain consumers within a population to

encourage faster adoption of the product throughout the entire population. However, deter-

mining how many and which consumers within a particular social network should be seeded

to maximize adoption is challenging. In this chapter we define a strategy space for consumer
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seeding by weighting a combination of network characteristics such as average path length,

clustering coefficient, and degree. We measure strategy effectiveness by simulating adoption

on a Bass-like agent-based model. The Bass diffusion model [F. Bass, 1969; F. M. Bass, 2004]

is a well-known model in the field of marketing for characterizing the adoption of a product

in the marketplace over time, as the result of interactions between consumers and the twin

forces of innovation and imitation. Whereas the classic Bass model assumes perfect popu-

lation mixing and uses differential equations to predict adoption patterns, the agent-based

version applies these principles to local interactions between agents in a social network con-

text [Rand & Rust, 2011]. We examine this model’s behavior on five different social network

structures: four classic theoretical models (random, lattice, small-world, and preferential

attachment) and one empirical (extracted from Twitter friendship data). To discover good

seeding strategies, we employ genetic algorithms to search through the parameter-space of

agent-based models. This evolutionary search also provides insight into the interaction be-

tween strategies and network structure. Our results show that one simple strategy (ranking

by node degree) is near-optimal for the four theoretical networks, but that a more nuanced

strategy performs significantly better on the empirical Twitter-based network. We also find

a correlation between the optimal seeding budget for a network, and the inequality of the

degree distribution. A short follow-up study with a second empirical network (an online

social network for college alumni) corroborates our findings on the Twitter-based network.

In previous chapters we have noted that exploration is not equivalent to optimization;

however, there are many cases where optimization is an important task for model analysis.

This chapter focuses on the use of genetic algorithms to perform optimization for opti-

mization’s sake, rather than for the purpose of seeking qualitative behavior. However, the

particularly interesting findings go beyond merely identifying optimal seeding strategies; it is
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the cross-comparison of “optimal” parameters across different model conditions that yields

the most fascinating results. Searching a model’s parameter space while fixing certain model

parameters in turn (e.g., the underlying social network topology and diffusion “virality”) can

reveal interesting patterns of model behavior. Specifically, in this chapter we can learn about

how different viral marketing strategies play out differently in a variety of social networks

structures.

5.1. Motivation

Viral marketing, or word-of-mouth marketing, is based on the idea that consumer discus-

sions about a product are more powerful than traditional advertising. One way to encourage

positive word-of-mouth is by distributing reduced or free products to target consumers who

will then discuss the product with their friends and encourage those friends to buy the prod-

uct. However, whom to seed with these initial products in order to maximize the amount

and rate of product adoption is not obvious. Given an arbitrary social network and a limited

seeding budget, choosing the optimal seeding locations has been shown to be an NP-Hard

problem [Kempe, Kleinberg, & Tardos, 2003]. Furthermore, it is not clear what the proper

seeding budget should be for a particular network. Assuming that the product is beneficial

and that seeded consumers are inclined to speak positively about it, seeding more consumers

will increase the speed of product adoption. However, giving away more free products in-

creases the overall expense of the promotional campaign. In addition, seeded consumers are

removed from the pool of potential customers, which may decrease total revenue for the

product. Thus, it is important to choose both the correct target consumers to seed and the

correct seeding budget to maximize adoption.
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This problem has direct implications for real-world marketing managers. The growth of

YouTube, Twitter, Facebook, and other digital social media capabilities, has given market-

ing managers a new platform by which to advertise and market their products to consumers.

The compelling aspect of these platforms is that they encourage consumers to develop on-

line social networks which provide a formalization of the social interactions of individuals.

However, despite the power of this new media it has been difficult for marketing managers to

use this platform successfully [Baruh, 2009]. In many cases, due to privacy considerations,

the full network described by these social media applications is not known, so advertisers

are forced to rely on third party information about the consumers they are targeting.

To account for the challenges that marketers face, we propose a version of the general viral

marketing problem, which we call the local viral marketing problem or LVMP. We will first

overview related research, then formally define the LVMP, and discuss the agent-based model

we use for simulating adoption and the five networks we will test it on. We propose a range of

strategies to solve the LVMP, then discuss experimental results from exploring this strategic

space using a new evolutionary tool (BehaviorSearch), and conclude with recommendations

for future work.

5.2. Related Work

Recently there has been work on viral marketing from two different disciplines, com-

puter scientists, and marketing researchers. Originally introduced to computer science by

Domingos and Richardson [Domingos & Richardson, 2001], the problem was formalized by

Kempe, Kleinberg, and Tardos [Kempe et al., 2003] who described the problem as selecting

the correct individuals to seed with a product in an arbitrary network given a fixed mar-

keting budget. They showed that their formalization of this problem is in fact NP-hard,
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but presented some heuristic solutions to the problem, with some provable approximation

guarantees. However, their best approximation algorithm requires global knowledge of the

network; in other words, in order to be implemented the marketing manager would need to

know every node in the network and how it is connected to every other node; unfortunately,

this is an unrealistic requirement in many real-world cases.

Leskovec, Adamic, and Huberman [Leskovec, Adamic, & Huberman, 2007], on the other

hand, take a descriptive approach to viral marketing. Similarly within marketing research,

Goldenberg, Libai and Muller [Goldenberg, Libai, & Muller, 2001] use a cellular automata

model to describe adoption processes and characterize which individuals have the greatest

effect on adoption. Goldenberg and others have also examined the role of hubs (individuals

with a high number of friends) in the adoption process [Goldenberg, Han, Lehmann, &

Hong, 2009]. Other marketing researchers have explored how innovations diffuse across a

variety of different topologies [Shaikh, Rangaswamy, & Balakrishnan, 2006], and how word-

of-mouth affects product adoption [Chevalier & Mayzlin, 2006; B. Ryan & Gross, 1943]. In

contrast to this previous work, our goal is to make prescriptive suggestions for seeding within

viral marketing campaigns, but at a knowledge level that could be available to marketing

managers.

To accomplish this task, we use a genetic algorithm (GA) [J. Holland, 1975] to search

for optimal (or high-performing) strategies in the space of possible consumer seeding strate-

gies. Our task is equivalent to the problem of optimizing the parameters of a multi-agent

simulation, where the parameters control the seeding strategy. In a different context, one of

the earliest uses of a GA was to characterize the parameters of a cell simulation [Weinberg,

1970]. Later, Miller proposed the the use of nonlinear optimization techniques for a variety

of model exploration and testing tasks, dubbed as “active nonlinear testing” or ANT [Miller,
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1998]. Calvez and Hutzler used a genetic algorithm for several parameter search/calibration

tasks in an agent-based model of ant food foraging [Calvez & Hutzler, 2005]. Within the

marketing domain, Midgley, Marks, and Kunchamwar [Midgley, Marks, & Kunchamwar,

2007] have used a genetic algorithm to examine agent-based models in a consumer retail

environment. Building on this research, we have constructed a general tool, which we call

BehaviorSearch [Stonedahl & Wilensky, 2010a], for using evolutionary computation to ex-

plore the parameters of agent-based models created using the NetLogo agent-based modeling

toolkit [Wilensky, 1999]. (BehaviorSearch will be discussed in further detail in Chapter 10.)

5.3. Local Viral Marketing Problem

The global viral marketing problem1 (GVMP) consists of selecting a group of individuals

who will be seeded with a product in order to encourage their friends to adopt a product at

a quicker rate than they normally would have. The problem assumes that there is a graph

G, of vertices and edges, where each vertex is a consumer in the network and each edge

represents a social connection between two vertices. In addition to the social network, there

is also an adoption function, fi(t), which specifies the likelihood that a vertex, i, will adopt

a product at time t, given the adoption state of its immediate neighbors. For the purposes

of the results presented herein, the adoption function fi(t) is assumed to be the same for all

individuals, so we will use the notation f(t).

In order to simultaneously consider both the amount and rate of adoption, we will use the

notion of the net present value (NPV ) of an adoption network [Goldenberg, Libai, Moldovan,

& Muller, 2007]. Intuitively, the NPV measure accounts for the fact that it is worth more to

a company if people buy its product now, rather than several months from now, especially

1Also referred to as the Influence Maximization problem in some contexts.
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since new competing products may enter the marketplace. The NPV , given an adoption

function (f(t)), social network (G), and seeded vertices (S), is the sum of vertices that

adopt the product multiplied by the profit from the product and a discount factor for time

of adoption, specifically:

NPV (G,S, f(t)) =
∞∑
t=0

a(t)pλt

where a(t) is the number of adopters at time t, p is the profit for adoption of a product, and

λ is the discount factor. In our experimental results, we chose a 10% discount rate (λ = 0.9),

which has previously been used in related marketing literature [Goldenberg et al., 2007; Libai,

Muller, & Peres, 2009]. This discount rate represents the cumulative effect of several factors,

including the opportunity cost of not having the money earlier and the potential necessity to

lower prices over time to stay competitive. 2 The fully specified GVMP is to identify a set of

vertices S that will maximize the network’s NPV, given that |S| × c ≤ b, where c is the cost

of seeding one vertex, and b is a specified budgetary constraint. In the terms of the QBME

framework from Chapter 3, the model behavior we are interested in is the aggregation of the

number of agents whose individual-level state changes (from “not adopted” to “adopted”),

condensed over time. However, the NPV measure has the interesting property that it doesn’t

average equally across time steps - instead it is a weighted average over time, where events

that happen later are given less weight.

The local viral marketing problem (LVMP) is similar to the GVMP, except that we

remove knowledge of the structure of the global network (G), instead offering only charac-

teristics of each vertex which provide summary statistics about the vertex and its role in the

network. There are many different network measures that could be chosen [Wasserman &

2Preliminary comparison experiments suggest that using other reasonable discount values is unlikely to
change our qualitative results.
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Faust, 1994]; in Section 5.4.3 we will describe the specific measures we used, but one example

measure is the vertex degree (i.e., the number of neighbors). Specifically, the problem is to

find a weighting function, w(i), that determines where to place vertex i in a priority queue

for seeding. Once the queue has been created, vertices to be seeded are chosen in rank order,

until the budget (b) is exhausted. Also, in contrast to the GVMP, in our formulation of the

LVMP we allow b to be varied as part of the strategy, which includes finding an optimal

budget amount as part of the problem definition. Thus, we define a seeding strategy, S, to be

a weighting function w(i) together with a specified budget, b, as this is sufficient information

to seed an arbitrary network.

Our examination of the LVMP is arguably more relevant to the real-world than the

GVMP for a number of reasons. As discussed in Section 5.1, often the best budgetary value

to use for viral marketing seeding is unknown. Moreover, in many real-world cases the global

social network is also unknown. In face-to-face interactions, no one knows the full network

of any reasonably sized market, and even in the case of social networking web sites, privacy

constraints may prevent access to the whole network (e.g., Facebook), or data collection

limitations may be prohibitive (e.g., Twitter). Even in cases where data is available, running

simulations on the entire network to determine the optimal seeding strategies would be

computationally difficult, if not impossible. Solving the LVMP for realistic networks of

moderate size could provide marketing managers with a way to specify solutions that are not

reliant on global network knowledge. Moreover, since the LVMP strategies are specified in a

generalizable way that is not dependent on a particular network structure, they may facilitate

learning of solutions that perform well across a variety of network architectures. Finally,

solutions to the LVMP could be used to drive new business models. If the role of an individual

in diffusion is known, then social media platforms, such as Facebook, or intermediaries who
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work with these platforms, such as a third-party advertising firm, could charge different

premiums to brands for advertising to different types of consumers, based on the consumers

network characteristics. For instance, they might charge more for an advertising campaign

targeting well-connected users than for a campaign using random sampling. Solutions to the

LVMP would provide a way to quantify the differential utility, and appropriately price these

campaigns.

In this chapter, we specifically address these questions: How do different social networks

affect the optimal seeding budget and strategy? Does providing a complex strategy space

yield better solutions than simple strategies? How robust are LVMP strategies to different

adoption “virality” levels?

5.4. The Model

In order to investigate the LVMP, we must specify a model for the diffusion of prod-

ucts throughout the network. Specifically we must describe an adoption function, f(t), the

network structure, G, and the strategy space, S.

5.4.1. Adoption Function

There are at least two classes of product adoption function that have been examined, Bass-

like models [Rand & Rust, 2011; Goldenberg et al., 2001] (sometimes called “cascade” mod-

els), and “threshold” models [Watts, 2002; Watts & Dodds, 2007]. In the Bass-like model

(so-called because of its resemblance to the aggregate-level Bass model [F. Bass, 1969]), the

adoption decision consists of two factors, whether to adopt due to individual innovation, and

whether to adopt due to peer imitation. In a “threshold” model, each individual adopts only

if the fraction of their neighbors that has adopted is above a certain threshold. We will use
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a Bass-like adoption function that is the most immediate translation of the aggregate Bass

model to an individual level and is an example of an independent interaction model that has

been previously examined in similar forms [Goldenberg et al., 2009; Watts & Dodds, 2007;

Shaikh et al., 2006; Toubia, Goldenberg, & Garcia, 2008]. In our model, the heuristic for

adoption of individual i can be written as, f(t) = p+q(na(t)
n

) where p is the effect of external

influences on adoption, q is the effect of social influences on adoption, n is the number of

neighbors of i, and na(t) is the number of neighboring vertices who have already adopted

the product at time t. Although this adoption function clearly does not capture all aspects

of real-world influence between consumers, it has been validated against empirical data with

good results [Rand & Rust, 2011].

In the present work, we examine two different diffusion scenarios: a ‘medium virality’

scenario (p = 0.01535 and q = 0.455) and a ‘high virality’ scenario (p = 0.0007 and q =

0.53), which are at the middle and extremes (respectively) of empirically observed values

[Chandrasekaran & Tellis, 2007]. We do not examine a ’low virality’ scenario (high p and

low q), since the dominance of individual adoption over peer-based word-of-mouth minimizes

the network-effects that interest us, and viral marketing does not significantly affect adoption.

Different values of p and q may be seen to represent different types of products. A product

which has a high p relative to other products is one that consumers will naturally adopt on

their own; this could represent a product which is just clearly useful, such as a refrigerator.

A product which has a high q relative to other products is one which consumers are more

likely to adopt if many of their friends have adopted; this could represent a product with

considerable network efforts, such as a fax machine, or a product which encourages social

discussions, such as the Flixster Facebook app for sharing movie recommendations.
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5.4.2. The Networks

In the experimental results below, we investigate four abstract networks created using net-

work generation routines from the social network literature, along with one empirically de-

rived network. In all five cases, the number of nodes 3 in the network is exactly 1000. For

the generated networks, we also chose parameters that would yield a similar4 edge density

to that of the empirically derived network. Specifically, the networks are:

(1) random - an Erdös-Renyi random graph [Erdős & Rényi, 1960], with a uniform

probability ρ of an edge being present between any two vertices (ρ = 0.26712 in the

results below).

(2) lattice - a regular network, where each node in the network is located on a circle

and connected to a particular number of neighbors (26 in the results below) on

either side of them.

(3) small-world (sw) - this network is generated by starting with a lattice network,

and randomly rewiring some of the edges as described in [Watts & Strogatz, 1998]

(in the results below, we used a degree of 26 and a rewiring probability of 0.01).

(4) preferential attachment (pa) - this network is generated with the preferential

attachment mechanism described in [Barabasi & Albert, 1999]. Nodes are incre-

mentally added to the network and connect in a way that is preferentially biased

toward individuals who already have many connections (in the results below, 14

connections created per added node).

3The terms graph, vertex, and edge come from graph theory, whereas network, node, and link are often used
in network science – we will use these terms interchangeably.
4Matching the exact number of edges is not possible with these network generation algorithms, but reasonably
similar edge densities were obtained.
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(5) twitter - this network was extracted from data available via the public Twitter API.

It represents a small connected subgraph of the complete Twitter social network.

Starting with a random Twitter UID between 1 and 10 million, we used breadth-first

search to add the 999 nodes closest to our starting node, and all friendship links

(13, 343 in this case) between these nodes. (Note: we define A and B as friends

when A “follows” B and B “follows” A)5.

Visualizations of the five networks are shown in Figure 5.1). The lattice and random

networks are not realistic social networks, but they are used for comparison purposes, as

well-studied examples of extreme order and disorder (respectively). The small-world (sw)

and preferential attachment (pa) networks have been shown to model certain types of social

and constructed networks fairly well [Barabasi & Albert, 1999; Watts & Strogatz, 1998]. The

sw network has a high level of clustering, while maintaining a short average path length. The

pa network exhibits a power law (or scale-free) relationship between the degree of nodes and

their frequency of occurrence. The twitter network provides an example from a real digital

social network. It displays a more skewed degree distribution than even the pa network,

indicating that a very small number of individuals have a disproportionately large number

of social connections.6

5.4.3. Strategies

In order to evolve solutions for the LVMP , we need to define the search space for optimal

strategies. In Section 5.3, we define a strategy to consist of two elements: the budget b, which

5In this work, for simplicity and consistency, we used only undirected networks. However, this approach
ignores the potentially important effects of assymetric following relationships on Twitter, and future work
should include additional investigation using directed networks
6This may partially be an artifact of our subgraph extraction method, but the degree distribution of the
complete Twitter network is likely to be similarly skewed.
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Figure 5.1. Visualization of the random, lattice, small world (sw), preferential
attachment (pa), and twitter networks (listed in left to right, top to bottom
order). The size of each node illustrates its degree (number of neighboring
nodes) in the network.

we will operationalize as the fraction of the total network to be seeded, fs, and a priority

weighting function w(i). For the experiments presented here, we will assume no additional

cost c for seeding a node beyond the loss in potential profit p that would otherwise have been

gained from a node if it had adopted, thus the budget cost b is reflected in the ineligibility to

adopt the product of the initial fs×n seeded nodes (where n is the size of the network). This

is a generally optimistic view of seeding costs, but may be realistic for digital media products,

where after the sunk development costs, the marginal production cost is near 0. A useful

weighting function for determining seeding priority requires information about individuals.

In this work, we will assume knowledge is available about several characteristics of nodes in

the network, illustrated by the following five simple weighting functions:
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Figure 5.2. Degree distributions for each network, displayed on a log-log plot.
As the precise shape is dependent on binning choices, this histogram is meant
only to give a general sense of the degree distributions. The dotted lines serve
only to guide the reader between data points.

(1) degree - the number of neighbors of the target node normalized by the maximum

possible value, i.e., wd(i) = degree(i)
max(degree)

. Higher degree nodes influence more neigh-

bors, directly encouraging more adoption.

(2) twostep - a measure corresponding to the number of nodes that are reachable within

two steps of the given node (by following edges in the network), wt(i) = twostep(i)
max(twostep)

.

An extension to the degree measure.

(3) average path length (apl) - the average number of steps from this node to any other

node subtracted from the maximum average path length of any node in the network
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and normalized: wa(i) = max(apl)−apl(i)
max(apl)

. Nodes with lower average path length are

better connected to the entire graph, potentially encouraging adoption.

(4) clustering coefficient (cc) - 1.0 minus the fraction of neighbors of the node whose

neighbors are also neighbors of the target node, normalized by the highest clustering-

coefficient in the network, i.e., wc(i) = 1.0 − cc(i)
max(cc)

. The lower the clustering

coefficient of a node, the less overlap there is among its neighbors, encouraging

wider adoption more quickly.

(5) random - the priority of an individual is determined randomly, i.e., wr(i) = U [0, 1].

(Note that each weighting function is normalized so that values fall within the range of [0, 1],

and higher values of w(i) will correspond to a better ranking in the priority queue, and that

ties will be broken randomly.) In past work on the GVMP, the degree and apl have been

shown to be important factors, while random seeding performs poorly [Kempe et al., 2003].

We hypothesize that better solutions (using the same available information) than these 5

simple strategies may be possible if the strategies are employed together. Thus we consider

weighting functions that use a linear combination of the strategies above:

wcomb(i) = αdwd(i) + αtwt(i) + αawa(i) + αcwc(i) + αrwr(i) (5.1)

where the α’s express the normalized weights assigned to each of these various characteristics

of the node. Finally, a linear combination might still not be expressive enough; what if it

were better to alternate seeding between two different strategies? For instance, first seed

the highest degree node, then the node with the lowest normalized path length, and back

and forth until the budget is exhausted. Therefore we expand our space to include “mixed

strategies”, consisting of two sub-strategies, along with an additional parameter for how
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often each substrategy should be used. This gives us our final w(i) function, which is:

w(i) =


wcomb,1(i) if x < p

wcomb,2(i) otherwise

(5.2)

where wcomb,1 and wcomb,2 are both of the form described in Equation 5.1 with their own

α’s, x is a random variable drawn7 from U [0, 1], and p is the parameter which specifies

the probability with which wcombined,1 is to be used. Without loss of generality, we restrict

p > 0.5, meaning that wcomb,1 will always be the primary sub-strategy and wcomb,2 is the

secondary sub-strategy (chosen less often for seeding). Given this space, we can now describe

an individual in the population of our genetic algorithm. Each individual will specify weights

for all the α values described above (ten different values, five for each of the two strategies),

a p which is the probability with which the first strategy is used, and fs which is the fraction

of the population to seed. This results in 12 real-valued genes for each individual, which is

not especially many, yet the search space is too large for a brute-force approach. Also, given

the complexity and stochasticity of the fitness function, we speculate that the space will

be highly nonlinear, and there will be noise in the fitness determination (discussed below).

These factors motivate our choice of genetic algorithms for exploring this problem.

5.5. Implementation

In order to explore the LVMP, we constructed an agent-based model of it using NetLogo

[Wilensky, 1999]. A screenshot of this agent-based model is shown in Figure 5.3. In the

model, we first create a number of agents (1000 for the experiments presented herein), and

then we connect them according to one of the social network topologies described in Section

7x is only drawn once per seeding choice
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Figure 5.3. The agent-based model of product adoption in a social network
setting, implemented in NetLogo. The parameters on the left side of the
model interface were held constant during a single GA search, whereas the
parameters on the right side of the interface (which control the initial seeding
strategy), were evolved by the GA.

5.4.2. Then we take the strategy currently being investigated, and we sort the list of all

agents using Equation 5.2. After this we select the fraction of agents at the top of this

priority queue using the fs specified by the strategy, and we seed each of these agents with

the product (setting their adoption state to true). Then at each time step of the model,

every agent who has not adopted the product runs the decision rule described in Section

5.4.1 to decide if they will adopt the product. Once all the agents have decided whether to

adopt the product in a particular time step, we record the total number of consumers who

have adopted and we begin the next time step. In our experiments, we make the simplifying

assumption that the product has some appeal to every agent in the population, thus the

simulation ends once all agents have adopted, and we calculate the NPV of the current
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run. Since the adoption heuristic is stochastic and the seeding strategy may be stochastic,

we run the simulation multiple times to more accurately calculate the expected NPV for a

given strategy. Specifically, an individual’s fitness is the average NPV from 10 simulations

(with different random seeds). While this Monte Carlo averaging cannot eliminate noise,

in practice we found that using 10 replicates sufficiently reduced the noise so the GA could

progress toward good solutions. Moreover, GAs are often successful despite the presence of

noise or uncertainty [Jin & Branke, 2005].

To automate the process of exploration, we have created a tool called BehaviorSearch

[Stonedahl & Wilensky, 2010a] that interfaces with NetLogo, and which can run a genetic

algorithm over the parameters of any NetLogo simulation. In this case, the parameters of

our model correspond to the seeding strategy to be evaluated. The genetic algorithm used

is reasonably simple: we generate an initial population consisting of 50 random individual

strategies, each containing 12 different genes as described in Section 5.4.3. The numeric

values that make up a strategy are discretized at a resolution of 0.01, and encoded as a

binary string, using a Gray code8.

The fitness of each individual is evaluated by decoding the binary string into the 12

strategy parameters, initializing the agent-based model with these parameters, and observing

the mean NPV from 10 independent replications of the simulation. Using these fitness

values, BehaviorSearch performs a standard generational GA [J. Holland, 1975] evolution

step (70% one-point crossover, 1% mutation rate, tournament selection with tournament size

3) on the population. This process is repeated for 200 generations. For both the ‘medium’

and ‘high’ virality scenarios, we used BehaviorSearch to conduct multiple instances (30) of

8We chose this representation since prior research suggests that Gray binary encodings are superior to
traditional high-order bit encodings [Caruana & Schaffer, 1988; Whitley, 1999], and our own preliminary
comparison experiments using real-coded genes did not appear advantageous to the Gray encoding.
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these searches on each of the five different networks (Section 5.4.2); this resulted in a total

of 2 scenarios× 5 networks× 30 searches× 50 individuals× 200 generations = 3 million

fitness evaluations. As each fitness evaluation requires averaging 10 runs, the grand total is

30 million simulation runs, which took approximately 11, 000 hours (or 462 days9) of compute

time.

5.6. Results and Discussion

The first result we will examine is the GA’s performance across the different networks

types. Figure 5.4 shows the best-of-run performance for the GA on each network topology,

for the ‘medium virality’ scenario (performance trends for the ‘high virality’ scenario were

very similar). The GA finds fairly good solutions for each topology early on and then the

rate of improvement slows after that. The effect of noisy fitness evaluation is observable, in

that the actual NPV values (dotted lines in the figure, approximated by the average NPV

from 1000 simulation runs with the GA’s best individual) are considerably lower than the

best-of-run fitness values the GA reports (solid lines). This is because the GA only averages

10 simulation runs to determine fitness, and then it chooses the best from the population,

so the noise causes an overly-optimistic estimate of the best individual’s fitness. However,

individuals with the highest noisy fitness are likely to also have highest actual NPV, and the

correlation between the increase in fitness and the increase in the actual NPV confirms that

the GA does make real progress despite the noisy environment. Figure 5.4 also demonstrates

that there are different maximum NPV values achievable for each social network. In fact,

there is substantial variability in the capacity of these different networks to transmit/diffuse

information which directly affects NPV. In general higher NPV values were possible on the

9Less than a month in real-time because these searches were distributed across a computing cluster.
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Figure 5.4. GA progress (averaged across 30 searches) by network topology,
for the ‘medium virality’ scenario. GA’s reported best-of-run fitness (solid
lines) are compared with the actual NPV values (dotted lines), estimated by
1000 simulation runs, showing the effect of noise. (Error bars too small to
show.)

networks with degree distributions that were more skewed, or inequitably distributed (in

particular, the pa and twitter networks). The NPV values have a theoretical maximum

of 1000 (unattainable), which would correspond to every person spontaneously deciding to

adopt the product immediately, without any seeded individuals.

Before examining the evolved strategies, we will discuss results for the seeding budgets

(seeding fraction, fs) discovered by the GA. In all of the 30 search replications, the chosen

fs was always centered tightly around a specific value, which indicates a high degree of

confidence that the seeding fraction values that were found are indeed optimal. However,

the specific value of fs varied substantially between network types, and also slightly based on

the virality scenario (see Figure 5.5). In general, fs was lower for those networks with degree
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Figure 5.5. The best seeding budgets found by the GA for each network type.
These are plotted against (on the x-axis) the Gini coefficient of the degree
distributions. The regression lines are not intended to propose a linear rela-
tionship, but merely to illustrate the correlation.

distributions that were skewed such that a small number of nodes had a disproportionately

large number of connections. Figure 5.5 displays this relationship quantitatively by plotting

the optimal seeding budgets (as discovered by the GA) against the Gini coefficient [Gini,

1912] of the network’s degree distributions, which is a standard measure of distributional

inequality ranging from 0.0 (flat equal distribution) to 1.0 (all connections concentrated in a

single individual). This relationship also mirrors how the maximum achievable NPV varies

by network type: essentially networks with uneven degree distributions have lower optimal

seeding budgets, and a higher payoff in terms of adoption (NPV). This result is sensible,

given that degree (wd) turns out to be very important component of seeding strategies for

all of the networks, as we will discuss below.
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The next question we investigated was what the best strategies discovered by the GA

looked like. For each of the 5 network types, in each of the 2 virality scenarios, Behav-

iorSearch provides us with the best strategies found in each of 30 GA searches. We present

here the results for the twitter network (which proved to be the most interesting case) on

the ‘medium virality’ scenario (see Figure 5.6). As shown, there is a fair amount of variation

among the GA’s best strategies. This is likely due to large plateau areas in the landscape

resulting in neutral evolution among a variety of different strategies, though it could also

indicate non-convexities in the space that make it difficult to search. Relating this back

to the behavior of the agent-based model, this result suggests that the rate of adoption

throughout the social network is not very sensitive to changes in some of the parameters

controlling seeding strategy. When using genetic algorithms to search the parameter-space

of agent-based models, the diversity of the parameters returned by the search can be in-

formative about the model, as discussed in the QBME framework (see Section 3.4.5). It

is worth emphasizing that the weight given to the “random” strategy (αr) was very low in

all the best strategies found by the GA (except for in the lattice network, where no LVMP

strategy outperforms random because all nodes have identical characteristics), which shows

that choosing an informed strategy for seeding is important.

Our next inquiry was whether the GA’s best strategies gave better performance than us-

ing very simple strategies with the same available information. For each set of 30 strategies

generated by the evolutionary search, we determined the “best strategy” by testing them

with an additional independent 1000 simulation runs, and choosing the one with the highest

average NPV. As a baseline for comparison, for each network, we also determined an NPV

value by seeding using each of the basic component weighting functions individually: degree
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Figure 5.6. Box and whisker plots showing the variation among parameters
for the best strategies that the GA found for the twitter network (‘medium
virality’ scenario). These strategies’ NPV performance varied slightly but was
consistently high (from 733 to 741). (Boxes show middle quartiles with median
marked red, and outliers as ×s.)

(wd), two-step neighbors (wt), average-path-length (wa), clustering-coefficient (wc), and ran-

dom (wr). On each of the five network types, wd proved to be the best basic strategy of the

five basic strategies. On four of the five networks, the best strategies found by the GA were

either only very marginally better, or not significantly different than wd, with the notable

exception being the twitter network, where the GA found a strategy that outperformed wd

by more than 19 NPV units, or 2.5% (p < 0.01 significance), in both the ‘medium’ and

‘high’ virality scenarios. A performance comparison is shown in Figure 5.7, and the GA’s

best strategies for the twitter network are displayed in Figure 5.8. Further testing showed

that in the best strategy for the ‘high virality’ scenario, the 1% use of a secondary strategy

had no impact, and in both ‘medium’ and ‘high’ scenarios, the small amount of αa (apl)

weighting included in these strategies was not significant in affecting performance. Thus,

the key strategic ingredient turned out to be the combination of high degree (αd) with low
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clustering-coefficient (αc). This is interesting, since using wc (cc) alone as a weighting strat-

egy performs worse than random seeding on the twitter network. The poor performance

of wc comes from a sizable number of degree one nodes (only a single friend) in the twitter

network, which (trivially) have clustering coefficients of 0, but make poor choices for seeding.

These findings beg the question: what is special/different about the twitter network, that

was not captured in any of the 4 abstract generated social networks, which makes clustering

coefficient information important for seeding? Our hypothesis is that many of the highest

degree nodes (hubs) in this twitter network are closely linked with one another, but that

there are some important individuals in the network that are further away from the central

hubs, and serve as “brokers” to individuals or groups that are not directly connected to the

hub. The visualization of seed choices within the twitter network (Figure 5.9) supports this

explanation. Logically, it makes sense to seed individuals that are both reasonably high

degree, and also play the role of brokers in the network – and yet, the wd + wc combination

does not outperform pure wd on the other four networks. This might indicate that the four

artificial networks fail to capture an important component of real social networks.

One of our research questions was whether mixed strategies (i.e. alternating between

two sub-strategies) offered any advantages over pure (single) linear-combination strategies.

In our current results we do not see any benefit, as the GA was only able to find a strategy

that outperformed the simple wd degree strategy in the twitter network, and that turned

out to be a pure strategy as well, only requiring a combination of wd and wc to succeed.

However, this does not rule out the possibility that a mixed strategy could be useful with a

different network from the 5 investigated here, or with a different set of available network

characteristics.
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Figure 5.7. Best strategies found by the GA compared against the 5 basic
component strategies.
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Figure 5.8. Components of the best primary sub-strategies the GA found for
the twitter network. Secondary sub-strategies were basically unused: p1 = 1.00
(‘medium’) and p1 = 0.99% (‘high’).

All evidence so far suggests that LVMP strategies are robust across different “virality”

levels. In particular, the simple wd strategy performed fairly well across the board, and the

improved wd +wc combination strategy for the twitter network was very consistent between

the ‘medium’ and ‘high’ virality scenarios. This is a hopeful sign for marketing managers, in



178

Figure 5.9. Visualization of three seeding strategies on the twitter network.

Figure 5.10. Visualization of the alumni network used in the follow-up exper-
iment as a second empirically-based social network.

that results may be generalizable across different types of products, and (to a lesser extent)

across different social network structures.
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5.7. Follow-Up Experiment on the Alumni Dataset

To either support or dis-confirm our hypothesis regarding the difference between abstract

and empirical networks, we obtained a second empirical social network and performed a

follow-up experiment. In this case, our data source was a small online social networking site

for college alumni, with the largest connected component containing 938 users and 1399 links

between users. Each link represents a symmetric social tie, based on a threshold number of

combined communication interactions (email, chat, leaving a messaging, etc) going in both

directions between the users. A visualization of this network is provided in Figure 5.10.

Note that this network is significantly different from the twitter network, both in terms of

what it represents (discretized social interactions on a social networking site versus “mutual

followers” on a social media network) as well as the network properties. Primarily, the

alumni network is much less dense (average degree of 3.0, as opposed to average degree of

26.7 for twitter). The alumni degree distribution is highly skewed, although not quite as

unequally distributed as the twitter network (Gini coefficient of 0.44 versus 0.58 for twitter).

However, despite the differences, the best seeding strategies for the alumni network

(discovered by performing genetic algorithm searches similar to those described above) were

strikingly similar. Again the best strategy was a combination of weighting by degree and clus-

tering coefficient. Specifically, both the medium and high virality scenarios yielded around

two-thirds weighting by degree and one-third by clustering coefficient (the precise breakdown

for both cases is shown in Figure 5.11). Although these numbers don’t perfectly match the

twitter strategy, this follow-up investigation strongly corroborates two qualitative results

from the original study: 1) that using a combination of clustering coefficient and degree is

beneficial for selecting seeds for the LVMP, and 2) that there is something different about
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Figure 5.11. Components of the best primary sub-strategies the GA found for
the alumni network.

empirical networks (possibly due to community structure) which is not being captured by

the abstract network generation models.

5.8. Side Note on Search Performance

Our primary focus in these experiments was on obtaining good solutions (strategies) for

the LVMP domain, a task for which the genetic algorithm proved very effective. However,

there raises the further question: very effective relative to what? First, we note that an ex-

haustive factorial (grid-sweep) experiment of the parameters at this fine-grained resolution

is simply not feasible. In fact, even at very low resolution (say, 3 settings per parameter),

simulating that number of combinations would take about 50 times longer than a single

GA search at the fine resolution. However, simpler meta-heuristic search algorithms than

GAs exist, and it is valid to question whether GAs provide better performance in this task.

Arguably the most basic search algorithm is random search, which samples points uniformly

at random from the parameter space. Random search is quite comparable to factorial ex-

periments, since both are sampling uniformly throughout the space (although the factorial

approach enforces uniformity whereas random search obtains it on average). While we did
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not carry out extensive comparisons between different search algorithms’ performance, we

did compare the genetic algorithm against the baseline of random search (RS), and a hill

climbing (HC) algorithm (which is also an evolutionary algorithm in the broader sense of the

term, but unlike the GA it is not population-based and it does not use recombination). The

hill climber used the same mutation rate as the genetic algorithm, and it was configured to

randomly restart (from a new location in the parameter space) after 100 successive failures

to make uphill progress. The results for the high virality scenario (shown in Figure 5.12)

demonstrate that there was a clear (and statistically significant) benefit to using GAs in this

case study, compared to both HC and RS. For this task, the hill climber heuristic provided

only a marginal benefit over random search, whereas genetic algorithms outperformed both.

For the medium virality scenario, performance results (not shown) were very similar. (Fur-

ther comparisons of search algorithm performance on a variety of model exploration tasks

will be covered in Chapter 9.)

5.9. Future Work and Conclusions

In this case study we have only explored one potential adoption heuristic, but a wide

range of adoption heuristics exists within the space of contagion/adoption models [Dodds &

Watts, 2004]. The Bass-like model investigated here may be the best validated of extant viral

marketing models, but it could be useful to look at others, especially since the applicability

of adoption heuristics may vary according to product types, e.g., consumer durables vs.

software.

In our seeding cost we have assumed that every node costs the same amount to be

seeded, but it may be more expensive to seed an individual with more friends. Influentials

are influentials because people respect their advice, and thus they are not as easily swayed
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Figure 5.12. Performance comparison for the genetic algorithm (GA), hill
climber (HC), and random search (RS) search methods. Error bars show
95% confidence intervals on the mean.

by promotions. The landscape of best possible strategies will alter when different cost

functions for seeding are used, especially those that take into account the underlying network

characteristics, which are the same features used by the seeding strategies.

While we attempted to choose a representative set of social networks that covered a

range of network types, we found that our results were substantially different for our two

empirically-based networks (twitter and alumni) than for the theoretically-based networks.

This reminds us of the importance of working with empirical network data in addition to

abstract theoretical models. It would be worthwhile to explore alternative network struc-

tures, with different degree distributions and different topologies, and most importantly,
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other empirical networks should be gathered and examined. Also, it is unclear how well

LVMP strategies generalize from a sampled sub-network to the whole network. Future work

should include examining how well the strategy derived for our small twitter network might

apply to the whole Twitter network, or to successively larger subgraphs, to see if the results

scale.

In conclusion, we have presented a novel problem (the local viral marketing problem),

constructed an agent-based model to simulate consumer behavior for this problem, and

showed that evolutionary computation provides a useful method for exploring this space and

discovering unexpected features of the problem and the social networks being investigated.
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CHAPTER 6

Case Study 3: Artificial Anasazi – Calibration and Sensitivity

Analysis

“Digging ... that is the occupation of an archaeologist, my dear.”
– Elizabeth Peters, Lord of the Silent

“Essentially, all models are wrong, but some are useful.”
– George Box

Academic fields of research are often stereotyped: mathematics is about writing proofs,

geology is about studying rocks, and archeology is about digging up ancient ruins. While

these stereotypes are based on practices which are prevalent in their respective fields, this

typecasting of scientists and the methods they use is harmful for two reasons: 1) because

outsiders form a constrained view of the rich variety of methods and tools employed within

the discipline, and 2) because practitioners of the discipline themselves may be influenced

by these cultural stereotypes, and thus limit their own research methodologies to conform

(either consciously or subconsciously) to these norms. However, there are many fine ex-

amples of iconoclastic research that helps to break down these stereotypes. One of these

is the well-known Artificial Anasazi simulation, in which a multidisciplinary team of ar-

chaeologists, anthropologists, paleoclimatologists, and computer scientists worked together

to create a model attempting to explain the rise and fall of a prehistoric society. This

simulation provides a “digging-free” method of exploring archaeological research questions.
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In this case, the Artificial Anasazi model was able to match the historical record in many

respects, but failed to match on one important point: the desertion of the valley. In this

sense, the model was “wrong”, because it did not reflect reality. However, the model was

still “useful” to the researchers, because it showed that the assumptions and simplifications

they used when creating the model were insufficient to produce the historical phenomenon,

and thus additional factors must have contributed. As George Box noted, all models involve

simplifications of the target phenomena, and are thus “wrong” in that sense. This type of

“wrongness” is actually part of what makes models useful, because if the model contained the

full complexity of the target phenomenon, it would provide less insight into which aspects

of that phenomenon were most important. However, there are other ways in which models

may be “wrong” – such as when there are errors (bugs) in the model’s code. In this chapter,

we will see an example of how search-based sensitivity analysis helped uncover a bug in a

previously published version of the Artificial Anasazi model.

In the previous two case studies, I was personally involved in the development of the

models being explored (that is, the Flocking Vee Formations model, and the Diffusion of

Product Adoption model). In contrast, this third case study uses an extant model (Artificial

Anasazi) that was created by other researchers, and applies the query-based model explo-

ration framework for model analysis. Specifically, we elaborate on the QBME framework

presented in Chapter 3 by investigating the use of genetic algorithms (GAs) for performing

two common tasks, parameter calibration and sensitivity analysis, which are related to the

evaluation of validity and robustness of agent-based models. In the calibration task, we

demonstrate that a GA approach is able to find parameters that are equally good or bet-

ter at minimizing error versus historical data, compared to a previous factorial grid-based

approach. The GA approach also allows us to explore a wider range of parameters and
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parameter settings. Previous univariate sensitivity analysis on the Artificial Anasazi model

did not consider potentially complex/nonlinear interactions between parameters. With the

GA-based approach, we perform multivariate sensitivity analysis to discover how greatly the

model can diverge from historical data, while the parameters are constrained within a close

range of previously calibrated values. We show that by varying multiple parameters within

a 10% range, the model can produce dramatically and qualitatively different results, and

further demonstrate the utility of sensitivity analysis for model testing, by the discovery of

a small coding error. Throughout this case study, we discuss some of the important issues

that can arise with calibration and sensitivity analysis of agent-based models.

6.1. Motivation

Agent-based modeling1 is a technique that is becoming increasingly popular for many

scientific endeavors, due to the power it has to simulate complex adaptive systems in a va-

riety of natural and social environments [S. Bankes, 2002; Bryson et al., 2007; Goldstone &

Janssen, 2005; Wilensky & Rand, in press]. In an agent-based model (ABM), there are many

agents operating according to simple rules, but the resulting interactions between agents lead

to the emergence of complex aggregate-level behavior. The resulting aggregate behavior of

an ABM (especially one that aims at high fidelity to real-world systems), is often dependent

on a large number of controlling parameters. However, because of the complex nature of

the emergent patterns, and the nonlinear interactions between these parameters, the out-

puts of ABMs can rarely be characterized by simple mathematical functions, and formal

analytic methods usually prove insufficient [Edmonds & Bryson, 2004]. Furthermore, the

computational time required to run an ABM, together with the large number of parameters

1Sometimes also referred to as multi-agent modeling, multi-agent based simulation, or individual-based mod-
eling
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often makes it infeasible to exhaustively compare all combinations of parameter settings.

Additionally, ABMs are predominantly stochastic in nature, leading to variability of results,

even when run multiple times with identical simulation parameters. As a result, the rigor-

ous analysis of agent-based models remains a challenging task, and proper methodology for

efficient analysis is still at a formative stage. In this work, we offer a case study about the

use of one particular approach, genetic algorithms (GAs), to accomplish two common model

analysis tasks: parameter calibration, and sensitivity analysis. For this case study, we chose

to examine the Artificial Anasazi model [Dean et al., 2000].

6.2. Background and Related Work

6.2.1. Artificial Anasazi model background

The Artificial Anasazi model [Dean et al., 2000; Axtell et al., 2002; Gumerman, Swedlund,

Dean, & Epstein, 2003] simulates the rise and fall of the prehistoric Kayenta Anasazi pop-

ulation living in Long House Valley, in northeastern Arizona from the years 800-1350 AD.

This agent-based model simulated the residential and agricultural practices of an artificial

society at the unit of individual households. It used geographic, rainfall, and various forms

of archaeological survey data to achieve a high degree of verisimilitude with respect to his-

torical reality. Moreover, after calibrating their model, the researchers found a reasonably

good correspondence between the model and the real history, for both qualitative spatial

settlement patterns, and population over time [Axtell et al., 2002].

A particular inspiration for the Artificial Anasazi model is to help understand the “fall.”

Archaeological records demonstrate that the Kayenta Anasazi abandoned the region around

1300 AD. However, the reason for this departure has been debated. One of the primary

findings from the Artificial Anasazi model is that environmental factors alone were not
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Figure 6.1. Graphical interface of Janssen’s NetLogo implementation of the
Artificial Anasazi model (with additional model parameters exposed).

sufficient reason for a complete exodus; the valley could have continued to support a modest

population [Axtell et al., 2002]. However, for a full discussion of the Artificial Anasazi model,

we refer the reader to the original sources.

In this work, we analyze the replication of this model2 by Janssen [2009], which was

implemented in the NetLogo modeling environment [Wilensky, 1999]. The model parameters

were hard-coded in Janssen’s replication, so we converted these variables into “explicit”

model parameters that are controllable via the model’s graphical interface (see Figure 6.1),

as well as making a few minor compatibility changes so the model would run in NetLogo

4.1.3

2Download available: http://www.openabm.org/site/model-archive/ArtificialAnasazi
3The exact model file we used is available at: http://ccl.northwestern.edu/ALIAS/LHV robustness
.nlogo.
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Several reasons motivate our choice of the Artificial Anasazi model for this case study.

First, whereas many agent-based models are “abstract” models, that demonstrate qualitative

trends or emergent phenomena, Artificial Anasazi is an example of a “facsimile” model in the

typology of agent-based models, which attempts to closely match historical data [G. Gilbert,

2008]. Second, it is a particularly well-known ABM that has received considerable attention,

both in the press (e.g., [Kohler, Gumerman, & Reynolds, 2005]), and from the agent-based

modeling community in general. Third, there have been several previous calibration efforts

using this model [Dean et al., 2000; Janssen, 2009], as well as published (univariate) sensitiv-

ity analysis [Janssen, 2009]. We will compare with these prior analyses as we discuss results

in the sections below.

Kohler et al. [2000] developed a similar ABM of the nearby Mesa Verde region during this

time period, and further elaboration of this model used the Cultural Algorithm framework

to embed (and evolve) social intelligence within the system [R. Reynolds, Kobti, Kohler, &

Yap, 2005; Kobti, Reynolds, & Kohler, 2006]. Despite the commonality of using evolutionary

algorithms, our work differs in that we are performing model analysis tasks externally to the

model, rather than incorporating evolution as a mechanism within the ABM.

6.2.2. Related methodological research

There are many ways of analyzing and checking for robustness in ABMs, including a variety of

approaches for calibrating model parameters and performing sensitivity analysis. [G. Gilbert,

2008; Wilensky & Rand, in press; Chattoe, Saam, & Möhring, 1997]. However, our present

work focuses on the use of genetic algorithms for these tasks.

This is not the first time that genetic algorithms have been suggested for parameter

calibration and sensitivity analysis of computer simulations. In particular, Miller’s [1998]
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seminal work on active nonlinear testing (ANT) proposed the use of metaheuristic search

algorithms for a range of tasks for computer simulations. Specifically, Miller demonstrated

how both calibration and a form of multivariate sensitivity analysis could be achieved on the

well-known World3 system dynamics (SD) model [Meadows et al., 1974], using either genetic

algorithms or a hill-climbing approach. SD models share several features with ABMs, such

as nonlinear interactions between parameters. However, SD models tend to model change

of aggregate (macro-level) quantities, whereas in ABMs macro-level dynamics emerge from

interactions between agents at the micro-level. Additionally, SD models are often determin-

istic, whereas ABMs are almost always stochastic in nature, requiring the examination of a

number of “trials” to evaluate the model’s behavior. As we will discuss later, the stochas-

ticity of model run results brings up several important questions about what it means to

perform robustness checking on an ABM. Moreover, we believe that the concepts of active

nonlinear testing deserve further investigation within the context of agent-based models of

complex adaptive systems.

Little work has been done in this area, with a few notable exceptions. Calvez and

Hutzler [2005] proposed the use of genetic algorithms for tuning the ABM parameters, and

demonstrated several parameter tuning tasks on a model of ant foraging [Wilensky, 1997a].

One of these tasks was a mock calibration task, which sought parameters that would yield

model output closest to data which had already been generated by the model. In contrast,

the Artificial Anasazi model represents a real calibration task, attempting to match real

historical data. Other cases of using genetic algorithms to search the parameter-space of

ABMs include: finding optimal seeding strategies for viral marketing in a social network

ABM [Stonedahl, Rand, & Wilensky, 2010] (see also Chapter 5), and discovering various

forms of emergent collective behavior in flocking ABMs [Stonedahl & Wilensky, 2011] (see
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also Chapter 4). We are not aware of previous instances of using genetic algorithms to

perform sensitivity analysis on an agent-based model.

6.3. Calibration Task

6.3.1. Task description & prior work

Broadly construed, the calibration of an ABM may refer to any process by which changes are

made to the model or its model parameters, such that the behavior of the resulting model is

closer to a desired behavior. In this chapter, we will more narrowly define calibration to be

the common case of searching for model parameter settings that yield output that is closest

to a specified reference pattern. (We will assume that only the model’s parameters may be

varied, and the model’s code is a fixed entity.) In the case of the Artificial Anasazi model, we

are following two previous calibration efforts [Dean et al., 2000; Janssen, 2009], though we

will primarily compare with Janssen [2009] because differences could exist between Janssen’s

replication and the original model, and also because the original authors’ calibration process

was not well documented.

Both previous calibration efforts chose the target reference pattern to be the time-series

of historical population data (number of households), and sought to minimize an error mea-

sure, which defined the “distance” between the simulated population history and the real

population history. Following [Dean et al., 2000], we will denote the historical population

data with a vector of length 550, Xh
t ), where t is the number of years since 800 AD, and

similarly denote simulated data with vector Xs
t .

Previous calibration efforts used multiple error measures of the difference between Xs
t

and Xh
t , specifically the three Lp norms (L1, L2, and L∞). However, prior work found

little difference between the choices of error function, and Janssen [2009] specifically found
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that both the L1 and L2 measures yielded the exact same optimal calibrated settings4. For

simplicity our work focuses on the L2 measure, which is also called the Euclidean distance

between the vectors Xs
t and Xh

t . Furthermore, minimizing the L2 measure yields the same

result as minimizing the mean squared error when comparing two sequences (the absolute

magnitude of the error measures will differ, but finding parameters that minimize f(x) is

equivalent to finding parameters that minimize
√
f(x), for f(x) positive). In terms of the

QBME framework discussed in Chapter 3, we are first applying a group-level measure (to

get the number of agents present in the model at each time step), and then measuring the

difference between this information and our reference pattern (at each time step), and then

condensing those differences to a single number using the L2 norm.

Janssen [2009] used a factorial experiment (grid-based sweep) for performing the cali-

bration. Due to computational constraints, Janssen varied only 5 parameters, with 7 to 9

choices for each parameter. In contrast, using a genetic algorithm (or other search-based)

approach to calibration makes it feasible to explore a much larger parameter space. Our cal-

ibration effort explores a 12-dimensional parameter space, with a wider range of parameter

values, and with higher resolution. For a comparison of the parameter calibration ranges we

used with the prior calibration effort by Janssen, see Table 6.1. Of course, there is no magic

bullet; the model can only be run so many times within a finite time limit. Given a the same

amount of computational time, the GA approach can only run the model with the same

number of different parameter-settings that the grid-based approach can. However, the GA

is a heuristic method that can adaptively explore more advantageous portions of a larger

parameter space. The intuition is that by harnessing the biologically-inspired mechanisms

4While this may have been true for this particular case, it does not hold in general, as we will see in Chapter
7



193

Janssen Range GA Range
Parameter low-high (inc) low-high (inc)
HarvestAdjustment 0.54-0.7 (0.02) 0.5-1.5 (0.01)
HarvestVarianceLocation 0-0.7 (0.1)∗ 0-0.5 (0.01)
HarvestVarianceYear 0-0.7 (0.1)∗ 0-0.5 (0.01)
BaseNutritionNeed 160 100-200 (5)
MinDeathAge 26-40 (2) 26-40 (1)
DeathAgeSpan 0 (const) 0-10 (1)
MinFertilityEndsAge 26-40 (2) 26-40 (1)
FertilityEndsAgeSpan 0 (const) 0-10 (1)
MinFertility .095-.185 (.015) 0.0-0.2 (0.01)
FertilitySpan 0 (const) 0-0.1 (0.01)
MaizeGiftToChild 0.33 (const) 0-0.5 (0.01)
WaterSourceDistance 16 (const) 6-24 (0.5)
∗varied in lock-step, as a single variance parameter

Table 6.1. Parameter ranges (low, high, and increment) for the GA calibration
task, compared with ranges explored in a previous grid-based calibration by
Janssen [2009].

of mutation, recombination, and natural selection, the GA will be able to evolve parameter

settings that minimize the error measure, and thus calibrate the model. Pragmatically, it

is often infeasible to perform calibration with fine resolution on a medium-to-large number

of parameters with a grid-based approach. For instance, an exhaustive grid-based search on

the parameter space defined for the GA in Table 6.1 would involve 6.5× 1016 combinations

of parameters, and would require a million processors each running for over a million years

to complete.

6.3.2. Search Method

The GA we employed was a standard generational genetic algorithm [J. Holland, 1975], with

a population size of 30, a crossover rate of 0.7, and a mutation rate of 0.05, using tournament

selection with tournament size 3.
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The value to be assigned to each model parameter was individually encoded in binary

using a Gray code.5 The concatenation of binary sequences for all model parameters forms

the genome for an individual in the GA.

Full generational replacement is used, meaning that from each generation of 30 individ-

uals, 30 children are created to replace the parent generation. Each child is created by first

using tournament selection to preferentially choose one or two parents with better fitness val-

ues, and then performing either sexual or asexual reproduction with the parent(s), followed

by per-bit mutation.

To evaluate fitness, the individual is decoded into the component parameter values, the

model is run 15 times with those parameters, and fitness function is calculated as the average

L2 error value from these replicate runs. During tournament selection, individuals with lower

fitness function values (lower average error) are preferred. The choice to minimize the average

15 replicate runs follows from the previous calibration efforts [Axtell et al., 2002; Janssen,

2009], although we also examine the alternative of searching for the single best run in a

second follow-up calibration experiment. In terms of the QBME framework from Chapter

3, this is a choice about how/whether to condense information at the replicate (or repeated

model run) level. This choice turns out to have important implications, as we shall see.

To monitor/verify the progress of the GA, for each new “best-so-far” model parameter

values that the GA found, an additional 30 independent replicate runs were performed and

logged, providing an unbiased (and more confident) estimate of the average L2 error for those

parameter settings. We will refer to this process as best-checking, and the verified value as

5Gray codes create a smoother mapping between numeric values and binary strings than traditional “high-
order” bit encodings, and are thus generally advantageous for search space representations [Caruana &
Schaffer, 1988; Whitley, 1999].



195

the checked fitness. (The GA does not make use of checked fitness information; rather, this

monitoring is extrinsic to the search process.)

Our GA implementation employed BehaviorSearch, which is a tool we have developed

that interfaces with NetLogo to automate the exploration of ABM parameter-spaces using

genetic algorithms or other meta-heuristic search techniques [Stonedahl & Wilensky, 2010a,

2011]. (BehaviorSearch will be discussed further in Chapter 10.)

6.3.3. Calibration15 experiment

Using the setup described above, we performed 5 GA searches for parameter settings that

yield the best average of 15 model runs. We will refer to this as the calibration-15 experiment.

Each search went for 100 GA generations, corresponding to running the simulation a total

of 45,000 times, with a small number of additional runs used for the extrinsic best-checking

process. A single GA search required approximately 16.5% of the 272,160 runs required by

the factorial-sweep approach employed by Janssen [2009], so the five searches together still

required less computation than the grid-base approach. To provide an idea of computational

running time, in total these searches required approximately 2500 CPU-hours (≈ 104 CPU-

days). Search time is dominated by the time required to run the model and the time spent

on genetic operations is inconsequential. Thus, in this chapter we will report computational

effort in terms of the number of simulation runs performed.

An examination of search performance of the five calibration-15 searches shows that one

of the five prematurely converged to a suboptimal solution, whereas four of the five reached

reasonably good levels of calibration (see Figure 6.2). The best parameter settings found

from calibration-15 experiment (as well as results from later experiments) are given in Table

6.2. These parameter settings yielded a mean L2 error value of 891.4 (σ = 65.8) from
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Figure 6.2. GA performance for the calibration-15 task.

running the model 30 times, which was lower than the mean L2 error of 945.3 (σ = 80.0) for

the Janssen calibrated settings. Both distributions of error appeared normally distributed

(Shapiro-Wilkes test, p < 0.01), and the finding that the GA’s mean error was less than for

the Janssen settings appeared statistically significant (Student’s t-test, p < 0.01). However,

we happened to decide to run the simulation 100 times with each of these settings, and

the picture suddenly changed.6 With 100 replicate runs, the mean L2 error for the GA

parameters was 943.1 (σ = 324.5), and the mean L2 error for the Janssen settings was 930.6

(σ = 194.4); the GA now appeared to have found worse (less calibrated) parameters.

6We include this vignette partially as a reminder that statistics must be interpreted with care, and that the
distributions of output variables from multi-agent-based simulations may be abnormal, irregular, or generally
unexpected.
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Figure 6.3. A histogram displaying the distribution of error values across mul-
tiple runs, comparing the GA calibrated settings with the calibrated settings
previously found by Janssen [2009].

This led us to examine the distribution of error among the 100-replicates for each case

(see Figure 6.3), which turned out to be non-normal. (In terms of the QBME framework, we

are now discussing the impact of diversity at the level of the fitness function across multiple

repeated model runs.) In general, the GA-provided settings usually offer a (slightly) better

match with historical data, but there are a few high-error outliers (that raise the mean error

value), and these outliers appear more likely with the GA’s settings than with Janssen’s.

These outliers are apparent in the visual comparison of the 100 GA and Janssen simulated

histories against the historical data (Figure 6.4). The median L2 error for the GA was 860.4,

compared to 893.8 for the Janssen settings, and a randomly chosen run with the GA settings

is almost twice as likely to have better performance than one chosen from the Janssen settings

(65.9% vs. 34.1%).
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Figure 6.4. Simulated population histories from 100 model runs, showing both
Janssen’s calibrated settings (a) and the GA’s calibrated settings from the
calibration-15 experiment (b), plotted in comparison to the historical data.
The flat tops of the simulated trajectories are artifacts of populations reaching
simulated carrying capacity, as discussed further in [Janssen, 2009].
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The trade-off present here may be described in terms of confidence versus accuracy. Given

three hypothetical choices, which of the following represents the best-calibrated parameter

settings for an ABM?

(1) simulated results are always somewhat close to historical

(2) simulations are often quite close, but occasionally far off

(3) simulated results occasionally match historical data perfectly, but are usually far off

Answering this question is difficult, particularly in facsimile-type models of historical events,

since there is only one recorded version of history to compare against (and even for that,

the data may be uncertain). We believe that this question warrants explicit consideration

whenever a model calibration is performed, and that the choice of distributional comparison

may require estimates of the likelihood of history having unfolded in the way that it did,

and consideration of plausible alternative histories. For the most part, these estimates and

theories will be subjective in nature, which is why it is especially important that they are

explicitly addressed during the calibration process. The choice of distributional comparison

for calibration will also depend partially on the goals for building the model.

In some cases, one distribution of error may dominate another, in the sense that every

error value in one distribution is lower than some corresponding error value in the other

distribution. In this situation, choosing the “better calibrated” settings is simple, and com-

paring the mean values is sufficient. However, we would like to emphasize that because of

model stochasticity, calibrating ABMs requires comparing one distribution with another,

rather than a single result. The issues we have preliminarily touched on here are part of
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a potentially much deeper discussion, which is outside the scope of this case study; in fu-

ture work we plan to formulate a more rigorous and general framework for addressing these

aspects of calibration and sensitivity analysis in ABM.

In the case of the Artificial Anasazi model, the GA’s distribution of error seems slightly

superior to us than Janssen’s, given that it usually provides a closer match, and it seems

reasonable that in some alternate histories an unlikely adverse chains of events (e.g., poor

harvests for many years in succession) could have caused the population’s trajectory to be

significantly lower (as seen in Figure 6.4). However, the differences in error values are small

and one could certainly argue that both the GA’s and Janssen’s settings are equally well-

calibrated; both recreate some features of the historical trajectory while failing to produce

others. The fact that the GA was searching a significantly wider range of parameters than

Janssen’s grid-based approach, yet was not able to find substantially better calibration,

suggests that previous calibration efforts on this model were not missing important fruitful

areas of the parameter space. However, as the 5 GA searches were only able to cover a small

region of the extremely vast search space, this evidence is not necessarily conclusive.

6.3.4. Calibration-1 experiment

The results of the previous experiment led us to wonder how different the results of model

calibration would be if we were instead seeking parameters that yielded the single best

run, rather than the smallest average error. Investigating this is interesting for several

reasons. First, it might discover settings that occasionally match the historical data, even

if average error is poor. Second, running the model once is much quicker than running the

model 15 times, and although it gives a noisier signal about calibration error, the GA might

be able to use this faster noisier fitness function to lead to parameters that provide good
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Janssen GA GA GA GA
Parameter calibration calibration-15 calibration-1 sensitivity-15 sensitivity-corr
HarvestAdjustment 0.56 0.67 0.64 0.6104 0.5264
HarvestVarianceLocation 0.4 0.47 0.44 0.436 0.436
HarvestVarianceYear 0.4 0.23 0.5 0.424 0.408
BaseNutritionNeed 160 200 185 144 164.8
MinDeathAge 38 37 40 40 41
DeathAgeSpan 0 3 10 1 1
MinFertilityEndsAge 34 36 29 37 31
FertilityEndsAgeSpan 0 9 5 3 0
MinFertility 0.155 0.13 0.17 0.16585 0.14105
FertilitySpan 0 0.09 0.03 0.0155 0.0031
MaizeGiftToChild 0.33 0.31 0.47 0.3102 0.35310
WaterSourceDistance 16 10 11.5 17.44 16

Table 6.2. Optimal parameters found by the genetic algorithm for both the
calibration and sensitivity analysis tasks, compared with the parameter set-
tings from the previous grid-based calibration by Janssen [2009].

average performance as well. Because the calibration-1 experiment requires fewer model runs

than the calibration-15 experiment to evaluate fitness, we were able to increase our genetic

algorithm settings to use a population of 90, running for 200 generations, for a total of 18000

simulation runs. We also increased the mutation rate to 3%, as a larger population can

generally support a larger mutation rate. Similar to before, we used a best-checking routine,

this time recording the minimum error from 30 independent replicate runs, each time the

GA discovered a new “best.” Again we ran 5 searches with these settings, to reduce the risk

of reporting anomalous results.

We took the parameter settings corresponding to the lowest checked fitness L2 error

(see Table 6.2), and ran the simulation 100 times with those settings. The lowest L2 error

obtained from this was 733.6, which is substantially lower than the 823.5 error that was

the best from the 100 runs with Janssen-calibrated settings. These single best runs are

compared in Figure 6.5. However, the average error for these parameter settings was 962.4,



202

800 900 1000 1100 1200 1300 1400
year

0

50

100

150

200

250
nu

m
be

ro
fh

ou
se

ho
ld

s
historical data
Janssen calibrated
GA calibrated

Figure 6.5. The single best runs found from 100 replicate runs with the settings
from Janssen (L2 error = 823.5) and the calibration-1 experiment (L2 error
= 733.6), compared with historical data.

which is somewhat larger than the mean error for Janssen or calibration-15. Essentially, the

best calibration-1 parameters cause more variation in model run results (compare Figure 6.6

with Figure 6.4), which can sometimes lead to a better historical fit, but provides a worse

fit if averaged.

This contrast highlights a potential problem with calibrating to get the lowest average

error. In order to obtain the absolute lowest average error, every model run would have to

be identically equal to the historical data. In general, such a result would indicate a very

unrealistic model, where only one path through history is possible. Over the past century,

our increased recognition of chaos theory and the effects of path dependence in the social
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Figure 6.6. Simulated population histories from 100 model runs with the best
calibration-1 parameters, plotted against historical data.

science domain (e.g., [Brown et al., 2005; Batty, 2007]) strongly suggests that small changes

in the initial conditions, or chance events early in the process, should significantly influence

the historical trajectory. In other words, while a well-calibrated model should be able to

produce something resembling the historical data, at least some variation in outcomes is

a desirable trait for model credibility. Accordingly, one could argue that the calibrate-1

experiment provides the best calibrated settings.

6.4. Sensitivity Analysis Task

Sensitivity analysis is a particularly important task, since the robustness (or lack of ro-

bustness) of a model with respect to changes in model parameters provides considerable

information about the complex system being modeled. However, despite its importance, it

is also a practice that is too often neglected by ABM practitioners; if it is performed at all,

it often covers only a few parameters, or neglects potentially nonlinear interactions between
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parameters. Some form of sensitivity analysis is a necessary part of ABM verification and val-

idation [G. Gilbert, 2008], as well as replication [Wilensky & Rand, 2007]. However, the term

“sensitivity analysis”, does not refer to a single precise technique or methodology; rather,

the term is broadly applied to class of related techniques that share the goal of determining

what factors cause model results to change, and with what magnitude [Chattoe et al., 1997].

In this chapter, we focus only on the specific approach of varying model parameters in the

vicinity of some “default” parameter settings. In the case of the Artificial Anasazi model,

a partial univariate sensitivity analysis has already been performed. Specifically, Janssen

[2009] examined the effect of singly varying each of the five variable parameters from their

calibration (HarvestAdjustment, HarvestVariance, MinDeathAge, MinFertilityEndsAge, MinFer-

tility) while holding all other parameters constant (fixed at the previously calibrated values).

While this approach does provide insight into the model dynamics near the calibrated point,

we are interested in the related question of how robust the model is to changes in multi-

ple parameters simultaneously. Specifically, if model parameters are each constrained to be

within a relatively small range of the calibrated values, how far “off” can the model’s output

be? Exploring this question is one form of multivariate sensitivity analysis, as discussed in

Miller’s [1998] work on Active Nonlinear Testing. Similar to Janssen’s calibration approach,

a grid-based factorial parameter-sweep could be employed for small numbers of parameters

being swept at low-resolution. However, again we propose an alternative approach of us-

ing a genetic algorithm to evolve parameter settings that yield results that are significantly

different from the model’s desired outcome (i.e. the historical data).
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6.4.1. Sensitivity-15 experiment

Our first sensitivity analysis experiment was to search for parameter settings, within a small

margin of the calibrated settings from Janssen [2009], that would yield the highest average

L2 error measure across 15 runs. Following Miller [1998], we chose to allow each parameter

to range within ±10% of its calibrated value. Notice that we only have to change two

small things in order to switch from performing model calibration to sensitivity analysis:

we restrict the search space to a narrower range for each parameter, and we attempt to

maximize (rather than minimize) the same error function (L2 distance) used for calibration.

Mirroring the calibrate-15 experiment, we used the same GA settings, and performed

5 searches, each of which ran the model a total of 45000 times7. All five of these searches

found parameter settings yielding L2 error values that were more than 4 times greater than

the calibrated Janssen settings error (930.6). For the best settings found (again, listed in

Table 6.2), the average L2 error was 3918.6 (σ = 249.7); Figure 6.7(a) visually displays 100

simulated histories with these settings. While our experiment differs in flavor from that

of Janssen [2009], it is still instructive to compare our results with that of the univariate

sensitivity analysis previously performed. Specifically, we note that when varying each of 5

parameters singly, the highest relative L2 error gain was 50% (within the ±10% parameter

range), and even the sum of the highest errors for each parameter is only around 150%,

which is still small compared with the > 300% increase in error discovered through the GA’s

multivariate search. This disparity is due in part to the GA manipulating more parame-

ters to which the model is sensitive (such as BaseNutritionNeed), and also to the nonlinear

interactions between parameters.

7However, running time in hours was over 80% longer, as these runs tended to create a much greater number
of agents
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(b) sensitivity-corr

Figure 6.7. Simulated histories from 100 runs with the best sensitivity exper-
iment settings, compared with historical data.
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Figure 6.8 displays the distribution of best parameter values found by the GA in each of

the 5 searches that cause such a dramatic discrepancy from historical data. (In terms of the

QBME framework from Chapter 3, we are now discussing diversity at the level of parameter

settings that resulted from the search process.) The different GA searches sometimes found

different settings from one another, but there are still some clear trends in the results. In

particular, they consistently discovered high values for HarvestAdjustment, HarvestVariance-

Location, MinFertility, and MinFertilityEndsAge, while they unanimously selected the lowest

possible BaseNutritionNeed value in the range. In other words, the model is particularly sen-

sitive to these parameters. For the most part, these parameter settings match our intuitions.

In order to achieve an extremely large population, there should be more bountiful harvests,

a higher reproduction rate for creating households, and low nutritional requirements per

household. The other parameters’ values are relatively scattered throughout the range, and

it is apparent that it is not necessary for them to be assigned a specific value in order to

achieve large error.

There was, however, a curious trend regarding the two HarvestVarianceX parameters,

which raised two questions:

(1) Why does an increase in the variation of crop yield coming from different fields

(HarvestVarianceLocation) result in larger populations?

(2) Why is yield variation over time (HarvestVarianceYear) not similarly correlated?

Addressing question 1, we first confirmed this was not a fluke by running the model 100 times

with the best sensitivity-15 settings, except using the lowest HarvestVarianceLocation value in

the ±10% range (0.36), and we found a more than 10% decline in L2 error (t-test, p < 0.01).

Next, we examined the model code, and discovered that the HarvestVarianceLocation was
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affecting agricultural quality as the variance of a normal distribution centered around 1.0,

but that agricultural value was not allowed to be negative, so was thus truncated at 0. As

a result, increasing the variance also increases the distribution’s mean value. The relevant

excerpt from the NetLogo model code is as follows:

ask patches [

;...

set quality ((random-normal 0 1)

* harvestVarianceLocation) + 1.0

if (quality < 0) [set quality 0]

]

This explains question 1 from above, and it stems from a reasonable modeling choice,

although the outcome shows that one must take care in the interpretation of model pa-

rameters. To answer question 2, we looked for where (HarvestVarianceYear) was used in

the code, only to find that it wasn’t. Instead, HarvestVarianceLocation was also affecting

variation over time; whereas HarvestVarianceYear was initialized and then never referred to

again. This was clearly a bug in the Artificial Anasazi model,8 which we had uncovered as

a result of performing this sensitivity analysis. Admittedly, a careful code audit, or other

forms of analysis, could also have helped find this bug. Nonetheless, our GA-based multi-

variate sensitivity analysis provided the information that led to the discovery of the bug in

this published model, which lends further support for the utility of this approach.

From the results, it seems possible that it would be sufficient to only test the extreme

settings (+10%, and −10%), rather than checking all values in between. With 12 parameters,

8We reported this issue in personal correspondence with the model author. We also note that this minor
error did not affect any of the results previously obtained in [Janssen, 2009].
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Figure 6.8. Distribution of “best” parameter settings found in each of the 5
GA searches of the sensitivity-15 experiment. Actual parameter values are
displayed as solid circles, while the boxes and whiskers display the middle 3
runs, and full extent of the data, respectively. The center x-value in each plot
corresponds to the Janssen calibrated settings.

this would only require 212 = 4196 combinations of parameter settings, which is a feasible

number to enumerate. This may often be the case, but in general one cannot be sure that

nonlinear interactions between parameters would not cause the optimal/extreme results to

fall elsewhere in the viable range. For models with very large numbers of parameters, and

small viable ranges for each parameter, allowing only 2 or 3 choices for each parameter may

be prudent, together with a genetic algorithm approach.
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We also performed a sensitivity-1 experiment, using similar settings as the calibration-1

experiment, searching for parameters that would cause the largest L2 error for a single model

run. However, the results were very similar to the sensitivity-15 experiment, and are thus

omitted for the sake of brevity.

6.4.2. Sensitivity-corr experiment

Although the sensitivity-15 experiment produced results of a different quantitative mag-

nitude than results from calibrated values, they were still qualitatively similar (see Figure

6.7(a)). We were interested in whether we could use a different error measure for a sensitivity

analysis to find simulated histories with a different general shape. As a measure for quali-

tative difference, we chose the Pearson product-moment correlation coefficient (r) between

the simulated (Xs
t ) and historical (Xh

t ) population sequences. As an example, the single run

with the largest L2 error value (4524.3) from the sensitivity-15 experiment still had a quite

high positive correlation (r = 0.83) compared with the historical data.

Using a genetic algorithm with the same settings as the sensitivity-1 experiment (pop-

ulation 90, 200 generations, 3% mutation), we ran 5 searches for parameters (within the

±10% range) that would yield the smallest correlation coefficient (r) value. The best (lowest

correlation) parameter settings are listed in Table 6.2, yielding an average correlation of

r = −0.18. Whereas the largest L2 error measure was achieved by an unrealistically large

Anasazi population, the smallest correlation was achieved by population decline and extinc-

tion, which are also consistently achievable within the ±10% range of calibrated values. Of

100 runs (shown in Figure 6.7(b)) using the best parameters for non-correlation, the lowest

correlation for a single run was −0.6, which had a relatively long lingering decline with the

population reaching 0 in the year 994 AD. Interestingly, because of our chosen measure, slow
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population declines cause greater negative correlation with the data than when the popula-

tion dies out almost immediately. This led the GA to find runs that were on the brink of

extinction, and thus out of the 100 runs, there are a few runs that are still highly correlated

with the historical data (the closest matches in 6.7(b)). Though the Pearson correlation-

coefficient was reasonably effective in this case for finding qualitatively different runs, it is

worth emphasizing that it may not always be appropriate. Developing a variety of error

measures for search-based sensitivity analysis that correspond well with human intuitions

about what constitutes qualitatively different behavior of a system is a ripe area for future

work.

6.5. Conclusions

To summarize, we have presented a series of 5 experiments using genetic algorithms

to perform tasks relating to ABM calibration and sensitivity. In the calibration tasks, we

demonstrated that the genetic algorithm could find calibrated parameters that were better

(in some respects) than parameters previously discovered in a grid-based sweep. This process

brought up important aspects of calibration (judging distributions of error, rather than sim-

ply mean error), which researchers should attend to during model analysis. In the sensitivity

tasks, we demonstrated that the genetic algorithm approach can consistently find parameter

settings that yield both dramatically and qualitatively different results. Additionally, the

multivariate sensitivity analysis highlighted several instances of anomalous model behavior,

leading us to discover a bug in the Artificial Anasazi model’s code. This emphasizes the

utility of sensitivity analysis as a technique for model testing and verification. Several of the

issues about search-based robustness-checking that arose from this case study deserve fur-

ther consideration, some of which will be discussed in later chapters. For instance, Chapter
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7 will dig a little deeper into the trade-offs between using different error measures for cali-

bration as the fitness function for genetic algorithms, Chapter 8 will investigate one aspect

of how model stochasticity (leading to noisy fitness functions) impacts search performance,

and Chapter 9 will provide performance comparisons for the effectiveness of different search

methods. However, some important outstanding questions remain: how should comparisons

best be made across spatial and temporal data?9 what is the most appropriate method

for comparing distributional outcomes against single-instances? how should models be cal-

ibrated using higher-dimensional or network-based data sets? A complete methodological

framework for addressing these questions is outside the scope of this document, but it is an

important area for future work in the calibration and sensitivity analysis of ABMs. However,

the results of the present study of the Artificial Anasazi model are both thought-provoking

and promising, and it is our hope that ABM practitioners will adopt similar methods to

improve the rigor of model analysis.

9However, there has been some recent progress in this area – see, e.g., [Brown et al., 2005].
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CHAPTER 7

Case Study 4: Online News Consumption – Calibration

Comparison

“Today’s scientists have substituted mathematics for experi-
ments, and they wander off through equation after equation, and
eventually build a structure which has no relation to reality.”

– Nikola Tesla (1934)

“Not all those who wander are lost.”
– J.R.R. Tolkien, The Fellowship of the Ring

The paired quotations above are illustrative of a certain yin yang relationship that ex-

ists in scientific modeling – a balance between the elegance and simplicity of theory and the

practicality of empirical data and experimental evidence. It is important to ground modeling

research with real-world data, while still retaining the freedom to “wander” through various

simulation microworlds that one may construct that are simpler or more elegant, to gain

insight through exploration of isolated aspects of the phenomena. Fortunately, agent-based

modeling does have some advantages in this regard over the equation-based modeling par-

adigm that Tesla maligned. This is because one can often map more directly between the

agents being modeled and the real-world entities they represent, whereas in mathematics the

equations can quickly become very abstract and difficult to interpret in the target domain.
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These quotations also seemed apropos for second reason because this chapter involves

modeling wandering itself – specifically, modeling the behavior of consumers of online content

as they wander (lost or not) from one website to another, reading news stories. However,

the specific topic of the case study is less important than the bigger picture, which is about

investigating the relationship between calibration measures and their corresponding fitness

functions when employed by a genetic algorithm to search the parameter space. Agent-

based models can be manipulated to replicate real-world patterns, but finding parameters

that achieve the best match can be difficult. To validate the model, the real-world dataset is

often divided into a training set (to calibrate the parameters) and a test set (to validate the

calibrated model). The difference between the training and test data and the simulated data

is determined using an error measure. In the context of using an evolutionary computation

technique to calibrate model parameters, the error measure also serves as a fitness function,

and thus affects evolutionary search dynamics. This chapter surveys the effect of five different

error measures on both a toy problem and a real world problem, using an agent-based model

to match online news consumption behavior. We use each error measure separately for

calibration on the training dataset, and then examine the results of all five error measures

on both the training and testing datasets. We show that sometimes certain error measures

serve as better fitness functions than others, and in fact searching for one measure may result

in better calibration (on a different measure) than searching for that measure directly. For

the toy problem, Pearson’s correlation measure dominated all other measures, but for the

more complex real-world problem no single error measure was Pareto dominant.
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7.1. Motivation

Agent-based models (ABMs) and other modern computational simulations tend to pro-

duce a large quantity of data, which is often longitudinal in nature. Moreover, in order to

properly utilize these models, since they are stochastic, it is often necessary to replicate runs

of the same parameter settings to create multiple datasets so that the statistical variance

present in the stochastic nature of the model can be captured [North & Macal, 2007]. Often

the goal is to show that these models can simulate real world behavior, a process known as

validation [Conway, Johnson, & Maxwell, 1959]. However, in order to match model data set,

M , against real world data set, R, there is often a large space of parameters, P , that needs

to be calibrated so that the simulated data best matches the real data, but choosing the set

of parameters that will maximize this match can be difficult. In order to identify the best set

of parameters, the real-world data set is often divided into two subsets: (1) the training set

Rtrain, and (2) the test set Rtest. Ideally, Rtrain and Rtest will both be equally representative

of the phenomena being modeled and collected under similar real-world conditions. However,

these two datasets may vary in a number of different ways, such as the size of the dataset,

the environment that they were collected in, etc. Thus, we must specify an additional set of

environmental variables, E, for each scenario: Etrain and Etest. The problem of calibration

can now be posed as a straightforward search problem: Identify the set of parameters P ∗

such that some error measure ε(Rtrain,M(P ∗, Etrain)) is minimized. Once the model has

been calibrated using P ∗, the results can be validated by comparing the model data to the

test set using, ε(Rtest,M(P ∗, Etest)), if this result is less than some threshold, T , then the

model is said to be validated.
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Many techniques can be used to search for the parameter set, P ∗, but if the problem

contains many different variables that are interdependent, then an evolutionary computa-

tion approach is often suitable. In order to conduct this search, a population of potential

parameter sets is generated and the fitness of each individual, Pi, is measured using the

error measure, ε(Rtrain,M(Pi, Etrain). In the context of an evolutionary algorithm, the error

measure, ε, becomes the fitness function, and so choosing the appropriate error measure is

critical not only to choosing a good set of parameters, but also to the evolutionary process.

As is the case of many evolutionary computation problems, the question then becomes which

fitness functions to choose [D. E. Goldberg, 1989; Ma & Abdulhai, 2002]? The choice of the

fitness function is important for two different reasons: (1) it will affect the performance of

the evolutionary algorithm, and (2) because it is the basis for calibrating the model and

judging the validity of the model.

To investigate the effect of an error measure on calibration and validation, we examine

a variety of error measures in the context of a real-world problem concerning online news

consumption. Specifically, we seek to discover the extent to which the underlying hyperlink

network between news sites can explain individual consumer browsing behavior, ignoring

content-specific issues and focusing solely on structural network properties and positions

of websites in the network. Such a model could be used to investigate how changes in

online news business models would affect consumption, e.g., whether the current push to

implementing paywalls1 around news sites will dramatically affect network traffic.

We begin this chapter by briefly describing related work on the calibration of agent-

based models and online news consumption. We will then discuss the news consumption

1“Why the NYT Will Lose to HuffPo”, Felix Salmon, Reuters, Feb. 8, 2011. http://blogs.reuters.com/

felix-salmon/2011/02/08/why-the-nyt-will-lose-to-huffpo/
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data that we analyzed, the model that we built and a “toy problem” which we used in

our analysis. Next, we discuss five candidate calibration/error measures and the general

calibration procedure, followed by a description of our data set, which consists of clickstream

data from thousands of individuals consuming news on the Internet. After this, we will go on

to discuss the implementation of our agent-based model (ABM) of consumer behavior. We

first examine the results of using different error measures on the toy problem, and then on

the real world dataset, and summarize our findings. Finally, we examine the use of different

error measures using the real-world dataset (for both training and testing), and summarize

our findings.

7.2. Related Work

Agent-based modeling is an increasingly popular form of computer simulation, wherein

a set of behavioral rules are specified at the individual level, the execution of which results

in trends emerging at the system/aggregate-level [North & Macal, 2007; S. Bankes, 2002;

N. Gilbert & Troitzsch, 2005; Wilensky & Rand, in press]. Along with other simulation

techniques, it often requires the specification of a large number of parameters that affect

both individual behavior and environmental factors in the simulation, and machine learning

approaches, such as genetic algorithms (GAs) are often brought to bear in these circum-

stances. While GAs [J. Holland, 1975; D. E. Goldberg, 1989] have long been used to explore

computer simulation parameters (e.g., [Weinberg, 1970]), there is an increasing amount of

research using GAs in conjunction with agent-based models. For example, Midgley et al.

[2007] used a GA to explore an ABM of a consumer retail environment, and Stonedahl et al.

[2010] (see also Chapter 5) demonstrated the use of GAs for searching for ABM parameters
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in the context of discovering good viral marketing strategies. Specifically regarding calibra-

tion using GAs, Miller’s [1998] seminal work on “active nonlinear testing” (ANT) proposed

the use of nonlinear optimization techniques (including GAs) for a number of important

model analysis tasks, including calibration. Miller [1998] demonstrated these ideas using a

deterministic equation-based systems dynamics model. In contrast, here we are attempting

to calibrate a stochastic agent-based model that we have developed, and more importantly,

are investigating the use of a variety of calibration measures and their impact on the GA’s

performance. Calvez and Hutzler [2005] used a GA for an artificially constructed calibration

task in an ant colony foraging ABM, attempting to match previously simulated data, using

Euclidean distance (L2 norm) to measure error. In the preceding chapter (Chapter 6), we

demonstrated the effectiveness of GAs for calibrating and analyzing the parameters of the

Artificial Anasazi model. That work focused solely on the L2 norm for calibration, for the

sake of matching previous grid-based (factorial) calibration experiments [Janssen, 2009] on

that same model, which showed little difference between the L1, L2, and L∞ error measures.

In this chapter, we show that the choice of error measure can make a difference in the both

the parameter settings (P ∗) that result, as well as the GA’s performance.

The model we are calibrating is in the application area of online news consumption.

There have been several surveys of how people consume news [Althaus & Tewksbury, 2000;

Dutta-Bergman, 2006] such as the Pew Internet & American Life Project’s recent report

[Purcell, Rainie, Mitchell, Rosenstiel, & Olmstead, 2010], but these surveys describe stated

preferences and not revealed preferences. Also, the surveys generally do not provide prescrip-

tive guidelines about how users might react to changes in the content news world. Tewksbury

[2003; 2005] examined both survey and URL data, but was primarily focused on what topics

people choose to read about and not how they consume news. Our work fills this gap by
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empirically examining not just what consumers read, but how consumers browse, and the

connection between browsing behavior and the underlying hyperlink network.

7.3. News Consumption

A brief description of the purpose of the model will help motivate its use as an example.

Before the growth of the internet, newspapers, essentially, had a geographic monopoly on

the area that they served. However, with the development of the web and hyperlinked struc-

tures of content, every newspaper had to compete with every other newspaper in existence.

As a result, they had to develop new revenue models, such as paywalls, public-sponsored

journalism, or consortiums of independent journalists, in order to deliver the same level of

quality they were able to deliver in the past. Unfortunately these new models are not based

on rigorous models of consumer behavior. Before a newspaper can understand the impli-

cations of these new revenue models it is first necessary to understand how users consume

news online so that projections can be made as to the effect of different revenue models.

Besides being a highly topical and relevant research area, this domain also has benefits

for investigating the effect of calibration measures because there is a large quantity of real-

world data, it is embedded in a distributed network, and the question revolves around finding

the parameters of an individual-level model that will produce emergent-level outputs that

resemble the real-world patterns. Additionally, the large amount of temporal data available

allows us to calibrate the model in one time period and then test the results on a separate

dataset.
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7.3.1. The Data

The data used for this analysis was clickstream data from comScore. This dataset con-

tains approximately 2 million page views per month, from a random sample of a thousand

internet users during the year 2007. We divided this data into two smaller datasets: one

containing only January browsing (for training) and one containing only December browsing

(for testing). Among other information, these datasets contain the referral domain and the

destination domain for every link clicked by each of the tracked users. For each of the two

datasets, we created a weighted directed graph where each node (vertex) represents a web

domain (e.g., nytimes.com), and a directed edge was placed between any node A and node

B if there were any hyperlinks clicked to travel from domain A to domain B. Each edge was

also assigned a weight, based on the amount of traffic (number of hyperlinks clicked) from

one site to another.

However, since our focus is on news consumption, rather than web browsing in general,

and because modeling the whole web is infeasible, we further filtered the dataset based on

a list of 455 domains identified as news top websites. Specifically, we included any site

that was in the top 100 news category from Alexa traffic rankings, combined with a list

created by Hasan et al. [2010] of the top news websites and blogs from the time period.

We kept only those edges for which the source and destination nodes were both in the list

of news sites. This reduced the size of the networks from over 80,000 nodes to 422 nodes

and 3113 edges (for January) and 417 nodes and 3086 edges (for December). Since we were

primarily concerned with cross-site browsing, we ignored intra-site links (which corresponds

to excluding self-loops from our graph representation). We also recorded the total amount
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of incoming traffic for each node that arrived either directly (e.g, via bookmark, clicked link

from email, etc.), or via some website not in our list of news sites.

Based on preliminary analysis of empirical data, we were able to show that network

position has an impact on how much traffic a website receives, and how often it is used as

a starting point for browsing. We found that, regardless of the website’s size (measured by

the traffic it receives in a month), the more central a node is, and the more it will be used

as an anchor node. A preliminary regression model on the data showed that highly central

nodes gain traffic over time, while less central, and more clustered nodes will lose traffic,

even when the original node size is controlled for.

Building upon these results we constructed a simulation that models the traffic across the

network. The training data (Rtrain) that we will be trying to match with our agent-based

model (described in section 7.3.2) consists of the quantity of traffic on each of the edges

during January, with the environment (Etrain) consisting of the unweighted version of the

graph (which is a proxy for the hyperlink structure) and the probabilities of entering the

graph (from the outside world) at each node. Similarly, Rtest and Etest are composed of

the equivalent data for the month of December. Things move quickly in Internet time: the

December network and traffic is substantially different from in January, with only around

60% of traffic volume remaining on the same links. A visualization of the January graph is

shown in Figure 7.1, illustrating a dense cluster of sites in the center, with many peripheral

(mostly low-traffic) sites surrounding it.

7.3.2. Model Implementation

Using the NetLogo [Wilensky, 1999] multi-agent modeling language, we developed a simple

agent-based model of consumer browsing behavior, premised on the idea that a consumer’s
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Figure 7.1. Visualization of the directed link network for the January comScore
dataset. Node size/color both reflect the total number of observed incoming
and outgoing hyperlinks for each website.

decision of which link to click on may be approximated as a function of the structure of

the observable inter-site hyperlink network. That is, given an unweighted directed network,

which merely shows the possible links to other news websites, an agent may choose among

the link options based on network-theoretic properties of the candidate destination nodes.
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Of course, it is ludicrous to imagine that consumers actually compute network measures

for each candidate website, when they are considering whether to follow a link to site A

or site B. Rather, these measures should be taken to characterize (or be correlated with)

unobserved properties of the site - e.g., a site with a high betweenness centrality is one that

serves a connecting role to the news website world, whereas one with a high number of out-

links to other sites is likely to be more of a news aggregator, and one with a high in-degree or

PageRank might be interpreted as being a producer. We also acknowledge that this model

ignores one of the most obvious factors that people (consciously) use when consuming web-

based news stories – namely, the title and/or content of the news article the link is pointing

to, i.e., the implied quality of the content. However, a key purpose of building this model

was to find how much leverage we can get out of the network structure, in terms of predicting

consumer traffic, while ignoring the content.

To explore this hypothesis, agents are given a ranking function, f(N), which is param-

eterized by weighting coefficients corresponding to the relative importance of a variety of

structural node-level network statistics. This ranking function takes a candidate node N as

input, and produces a real-valued score representing the appeal of moving to that node. The

ranking function is a linear combination of weighting coefficients corresponding to each of

the following properties:

• randomness - random value injecting noise into the ranking, allowing agents to choose

links stochastically.

• in-degree - # of incoming links to this node

• out-degree - # of outgoing links from this node

• in-component - # of nodes that can reach this node

• out-component - # of nodes reachable from this node
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• pagerank - PageRank score (with α = 0.85) [Langville & Meyer, 2005]

• hits-hubs - HITS hub score for this node [Langville & Meyer, 2005]

• hits-authorities - HITS authority score for this node [Langville & Meyer, 2005]

• clustering - clustering coefficient for this node (calculated on the undirected version

of the graph)

• betweenness - betweenness centrality of the given node

• eigen - eigenvector centrality of the given node

Each of the weighting coefficients is a model parameter which can vary between −1.0

(biased against) and 1.0 (biased for), except for the special randomness weight, which varies

between 0.0 and 2.0. For example, assuming all other weights were 0, an in-degree weight of

0.8 and a clustering weight of−0.4 would correspond to a movement rule that prefers following

links to nodes that have a large number of in-bound links and a low clustering coefficient.

Since the randomness weight is 0, this movement rule would deterministically choose the

same path through the network, given the same starting point. As a second example, if the

betweenness weight were 0.5 and the randomness weight were 0.5, the movement strategy

would prefer moving to nodes that have high betweenness centrality, but would also give

equal weight to randomness in its decisions.

Besides the ranking function described above, we include two additional parameters to

control the behavior of the agent: no-backtrack, which prevents an agent from going back to

a node they just visited, and random-restart, which controls how often the agent starts a new

browsing session. Given the ranking function and these parameters, the web surfing agent’s

behavior is as follows.
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(1) The agent starts at a random node, chosen with probability proportional to the

empirically observed likelihood of someone arriving at that node (either from a

non-news website, a bookmark, etc).

(2) The agent forms a set of candidates from all of the nodes that are reachable by

outgoing links from its current location. If no-backtrack is set to TRUE, then the

node that the agent just traveled from (if any) is excluded from the set.

(3) If the candidate set is empty, or if a random variable is less than random-restart, the

agent restarts at a new location, i.e., go to step 1.

(4) Otherwise, the agent computes the appeal of following each link by computing the

ranking function across the candidate nodes. To guarantee that the network char-

acteristics are each being given equal weight, the node-level characteristics of each

of the candidate nodes are normalized by dividing by the sum of that characteristic

across all candidate nodes.

(5) The agent then chooses the candidate with the highest ranking function score. The

agent follows the link to that node, and we record a “click” on the link.

(6) Until some specified number of clicks have occurred, go to step 2 and repeat.

The output of the model (M) is the simulated traffic distribution (how many times

each link was followed). When the model is run on an empirical network, this output

can then be compared with real world traffic data, and we can attempt to calibrate the

13 model parameters to improve the match (as described in Section 7.4). In terms of the

QBME framework introduced in Chapter 3, unlike in the Artificial Anasazi model, we are

not condensing information across time - instead, we are only using the final slice of data

in the temporal dimension, and discarding all history about how it reached that state.

Furthermore, there are three types of agents in this model (websites, hyperlinks, and web
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Figure 7.2. The directed network for the toy problem.

surfers), and we are only extracting information from the hyperlinks to compare it with

a reference pattern. Because this basic version of the model does not include interaction

between agents and because an agent restarting is equivalent to a new agent entering the

system, we ran the simulation with just a single agent. In its current form, the surfing agents

are also memoryless (or a one-step memory, if no-backtrack = true), making the simulation

interpretable as approximating the steady-state distribution of a stochastic Markov process

on the hyperlink graph structure.

Since the actual network is very complex and since we do not actually know the underlying

rules that consumers use when moving between nodes in a network, we also created a “toy”

network and dataset so that we can explore the effect of calibration measures in a world

where the ground truth is actually known. We generated a small random graph of 10 nodes

and 23 links (see Figure 7.2). We then initiated the model using a set of parameters that
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were similar to parameters discovered in the real world dataset based on early runs of the

GA: random-restart = 0.15, randomness = 0.40, out-degree = −0.1, in-component = 0.2, out-

component = 0.2, eigen = 0.1, no-trackback = false, and all other parameters set to 0.0. We

also assumed that the likelihood of starting at any of the nodes was equal. We then ran this

model once to generate a ground truth data set similar to the real world news consumption

data set.

7.4. Calibration

Regardless of whether we are examining the toy problem or the real world problem,

in order to match the model data, M , against real world data, R, we must first divide

R into Rtrain and Rtest, with corresponding environmental variables Etrain and Etest. Cal-

ibration is then accomplished by identifying the set of parameters P ∗ such that an error

measure ε(Rtrain,M(P ∗, Etrain)) is minimized, and the model can be validated by examining

ε(Rtest,M(P ∗, Etest)). In our case we use a GA with the error function, ε, as the fitness

function, and each individual being a potential parameter set, P . In this next section we

define five different error functions, and the specific calibration that we carried out.

7.4.1. Calibration measures

For this work, we assume that the real world data R and the model’s output M can both be

represented using fixed-length vectors of numeric values (VR and VM , respectively). Since it

is impossible to make a comprehensive list and test all possible error measures, we chose to

investigate a set of five specific error measures for model calibration: correlation, and four

different measures of the Lp norms. These five commonly-used measures span a range of
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what they emphasize, but they all capture some notion of distance between empirical and

model data.

(1) corr - Pearson’s product-moment correlation coefficient2. Since correlation values

range between −1 (perfectly anti-correlated) through 0 (uncorrelated) to 1 (per-

fectly correlated), the “error function” we are technically minimizing here is the

negative of the correlation. However, for simplicity of interpretation, we will report

all calibration values as the correlation (Pearson’s r). As a result, for this measure

only, a higher value will indicate a closer match to the empirical data.

corr =

n−1∑
i=0

(VM(i)− V̄M)(VR(i)− V̄R)

(n− 1)σVMσVR

(7.1)

where σVM σVR are the standard deviations of VM and VR respectively.

(2) L0 - This is an extension of the Lp norms to the case where p = 0. L0(VM , VR) =

(the number of positions where the two vectors differ). Note that the magnitude by

which they differ does not matter.

(3) L1 - The L1 norm, commonly known as “Manhattan distance”, is computed by:

L1 =
n−1∑
i=0

|VM(i)− VR(i)| (7.2)

(4) L2 - The L2 norm, commonly known as “Euclidean distance”, is computed by:

L2 =

√√√√n−1∑
i=0

|VM(i)− VR(i)|2 (7.3)

2Stonedahl and Wilensky [2010b] also proposed using the correlation coefficient as a fitness function, though
not in the context of calibration, but rather for the converse task of sensitivity analysis and model testing.
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(5) L∞ - The L∞ norm, also known as “Chebyshev distance” or “maximum metric”, is

computed by:

L∞ = max
i
|VM(i)− VR(i)| (7.4)

The four Lp norms comprise a spectrum of calibration choices: L0 ignores magnitude

and cares only about the quantity of errors, while L∞ ignores quantity and cares only about

the magnitude of the largest error. The L1 and L2 measures fall in between. Also, note

that minimizing the L1 norm is the same as minimizing mean absolute error, and the L2

norm is equivalent to minimizing either mean square error (MSE) or root mean square error

(RMSE).

The corr correlation function belongs to a different family of error measures. However,

the corr function has several interesting properties, including that it is invariant to both

location and scale. That is, perfect correlation can be achieved when VR = αVM + β where

α and β are scalar constants. Whether this is desirable depends on your situation and

calibration goals. In our case of attempting to match hyperlink traffic between news sites,

if our model can produce numbers that are correctly correlated with the traffic on each

link, then we would consider that a successful calibration. Scale invariance has the benefit of

needing shorter simulations using fewer agents to compare to real data using large numbers of

people over long time periods. However, in the current work, in order to successfully examine

all of the proposed error messages, we run our simulation until it has created exactly the

same amount of hyperlink traffic as the real-world dataset, so it is theoretically possible for

all calibration measures to attain a perfect match.
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7.4.2. Calibration method

To perform the actual calibration, we used BehaviorSearch[Stonedahl & Wilensky, 2010a]

(see also Chapter 10), which provides facilities for exploring the parameter space of agent-

based simulations using GAs. Specifically, within BehaviorSearch we used a steady-state GA

with population 50, tournament selection (tournament size 3), and replacement strategy of

replacing a random individual in the population. We used a crossover rate of 70%, with a

mutation-chance of 5% per locus, and one-point crossover.

The only complicated part of the GA setup was the genotype encoding, which used a

hybrid real-valued and boolean chromosomal representation, and included some engineered

epistatic interactions between genes. The random-restart parameter was real-coded, and

the no-backtrack parameter was boolean. The 11 ranking coefficients were real-coded, but

after each coefficient gene we inserted a boolean gene that controlled whether the previous

coefficient was expressed. The intuition behind this arrangement was that we had given

the model a fairly large number of potential network-statistics to include in the ranking

function, and it was unknown which would be useful. Providing epistatic switches that

could quickly turn some of these characteristics on or off might allow the GA to construct

simpler strategies to build on. Experimentation supported our intuition in this case (see

Section 7.6.1 for discussion and supporting evidence for this side-point).

For the real-valued genes, we used Gaussian mutation, with a standard deviation of 10%

of the parameter’s allowed range, and for the boolean genes, we used simple bit-flip mutation.

Crossover was performed only at the per-gene level – for simplicity, we treated the binary

genes and real genes the same during crossover, and we did not employ more sophisticated

real-valued crossover mechanisms (such as those proposed by [Ballester & Carter, 2004b]).
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Settings corr L0 L1 L2 L∞

original 0.993 (0.0012) 22.8 (0.4) 1392.2 (123.8) 527.5 (47.6) 345.1 (35.0)
GA-corr 0.999 (0.0002) 22.5 (0.6) 409.4 (74.8) 113.8 (24.7) 61.9 (18.4)
GA-L0 0.619 (0.0021) 23.0 (0.0) 7370.9 (56.9) 3074.5 (13.7) 2579.5 (15.4)
GA-L1 0.996 (0.0011) 22.9 (0.3) 991.7 (158.0) 282.9 (37.7) 180.8 (19.2)
GA-L2 0.995 (0.0007) 22.6 (0.5) 1150.5 (87.8) 323.6 (21.9) 156.8 (13.0)
GA-L∞ 0.991 (0.0010) 23.0 (0.0) 1694.7 (89.8) 436.9 (22.4) 172.2 (12.5)

Each cell gives the mean (and stdev) from 30 replicate simulations.

Table 7.1. Calibration measure cross-comparison for the toy problem. The best
GA-found parameter settings when optimizing using each calibration measure
were evaluated against the target data using all five calibration measures.
GA solutions were also compared to the original settings that were used to
generate the target data. The best calibration values for each column are
shown in bold (correlation is maximized, whereas the Lp error measures are
minimized). (There was no clear best L0 measure.)

For the fitness function, we used one of the calibration measures listed above in section 7.4.1,

comparing simulated results from our ABM against the empirical traffic distributions for the

same network.

In general, we ran 30 repeated searches using the GA for each calibration function and

for each dataset (the toy problem and real world problem) . We ran the search for 200K

fitness evaluations (model simulations) for the toy scenario, and 100K fitness evaluations

for the comScore January dataset (the much larger dataset and longer simulation run-time

necessitated running shorter searches). After the evolution finished, we chose the best search

result from each of the 30. This gave us 5 parameter sets, P , for each problem; one for each

error measure.
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Figure 7.3. Parameter settings for the best individuals from the best GA-
searches for each of the five calibration measures, for the toy problem.

7.5. Results and Discussion

7.5.1. Toy problem

The best results for the toy problem are given in Table 7.1, and the parameter settings that

achieved those results are shown in Figure 7.3.
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Finding 1: We were surprised to discover that the GA was able to find parameter

settings that matched the target data better than the original parameter settings that were

used to artificially generate the target traffic data. For instance, the average correlation

measure from 30 runs with the best settings found in the GA-corr searches was slightly

better than the correlation when the model was run 30 times with the original settings.

Similarly, better L1, L2, and L∞ error measures were achievable with the GA’s settings than

with the original settings. How is this even possible? The finding relies on the fact that the

model is stochastic - different random choices by the surfer agent result in some variation in

traffic distributions among the links. If the surfer agent was allowed to run for an infinite

number of steps, the traffic distribution would converge to a steady state. However, after

10, 000 link-follows, results can still vary, meaning that when running the model with the

original settings, and trying to match the data generated from one specific run, you do not

automatically get a perfect matching.

Finding 2: The L0 error measure performed very poorly (mean L0 error of 23). In

fact, L0 error measurements are out of a maximum of 23, which corresponds to failing to

perfectly match the traffic of any of the 23 links in the graph, and regardless of the error

measure this value always neared 23. Even when the GA was searching for the best L0

error-value, the parameter settings it found failed to match the data on any link on any of

the 30 runs. On the other hand, some of the best calibrated parameters using other methods

(e.g., GA-corr) managed to match exact traffic values occasionally. The poor performance

on the GA-L0 search can be attributed to its providing an insufficient search gradient, as

well as the objective being very hard to achieve (as evidenced by the generally poor L0 values

obtained by all searches). Compared to the other Lp measures, optimizing the L0 measure
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is in some sense closer to a needle-in-a-haystack function and it should probably be avoided

in GA-based calibration for this reason.

Finding 3: In this experiment, the GA-corr search proved to be the clear winner.

As shown in Figure 7.3, the GA-corr parameter settings were similar, but not identical

to the original (TRUE) settings that generated the toy dataset traffic distribution. Quite

surprisingly, searching for good correlation yielded parameter settings that also provided

lower L1, L2, and L∞ error measures than the parameters discovered when attempting to

optimize for those quantities directly. In other words, the correlation calibration measure

served as the most effective fitness function for this problem, regardless of which calibration

measure you were most interested in. Thus, the GA-corr parameter settings Pareto dominate

the other parameter settings – that is, these parameter settings are as good or better than the

parameter settings found using other fitness functions, on every calibration measures. This

suggests that the correlation fitness function somehow smooths out the fitness landscape and

more directly leads the population towards a more fruitful area of the search space than the

Lp-based error measures do. In any case, this result was quite surprising to us, since we

expected that GA-searches for a specific calibration measure (with the exception of the L0

measure, which we anticipated might fail) would excel in optimizing its own value (though

possibly at the expense of other calibration measures). This would be an extremely important

and useful discovery if the superiority of correlation-based calibration were generally true;

however, this is not always the case (as will be demonstrated by the experiments in the

following section).
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7.5.2. Real World Problem

7.5.2.1. Training set. We now turn our attention to the problem of matching empirical

web traffic on our substantially larger dataset, where it is unknown how good of a calibration

we can expect. The results from both the training and test set error measure comparisons

are presented in Table 7.2, and the values of the best parameters found in each search are

given in Figure 7.4.

Finding 1: Unlike in the toy problem, the GA is able to make some progress optimizing

the L0 calibration measure, as evidenced by it finding parameters yielding lower mean L0

than the searches optimizing correlation or the other Lp norms. This makes some sense,

because whereas the toy problem only had 23 links that could either match or not match,

the comScore-January network had 3113 links, allowing the L0-based fitness function a little

more possibility to provide a search gradient. However, an L0 measure of 2811 means that the

simulated traffic did not match exactly on 2811 links, out of the 3113 links in the network.

In other words, even in the best case, the GA was only able to find settings that could

match about 10% of the network’s links on average, while leaving 90% mismatched. This

underscores the fact that requiring perfect matching of historical data is a harsh criteria for

calibration, at least in our given scenario. In some cases, perfect matching of real-world data

may be feasible, but even in such cases, we predict that calibrating using either correlation or

an Lp norm where p > 0 will provide more information to the GA and permit more efficient

search.

Finding 2: Unlike the toy problem where all the model results, regardless of the error

measure, match well with the data using the correlation measure, in the real world dataset

those parameter settings which were specified using one of the other error measures do not
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generate model results which match well using the correlation measure. There are in fact

statistically significant different results on all of the measures, but nowhere is this difference

more striking than the correlation measure. The model data generated using the correlation

error measure, correlated twice as well with the data as any other model data set that was

generated. In the case of L2, in particular, the data was almost uncorrelated with the real

world data, indicating that a random result would have done almost as well as the results

generated by the L2 measure. This seems to indicate that correlation is definitely capturing

a very different element of the matching problem than any of the other measures.

Finding 3: Unlike the toy problem where correlation was Pareto dominant, in the real

world problem no error measures dominated all other error measures (though L2 dominated

L1). Given that there is no pure dominant measure, researchers must be careful as to which

measure to choose when calibrating their models. This is especially true given that Figure

7.4 shows that the actual parameter settings discovered by the various measures were not too

different, and yet those different settings had a large impact on the error measure scores. As

we discussed in Section 7.4 these different measures all take into account different choices,

researchers should use L0 if they are interested in the quantity of errors, and L∞ if they

are interested in magnitude of the largest error, but clearly there is no measure that will

subsume all the others. Moreover, researchers should be aware of these measures and what

effect each one has on the calibration effort when adjudicating the results. For instance, a

paper which focuses primarily on L∞ could very well be covering up that though the largest

error was small, every single matching element was incorrect, and vice versa for L0.

7.5.2.2. Testing set. Finally, we take the parameter settings, P ∗, calibrated on the Jan-

uary data, Rtrain and examine the results of the error measures on a dataset collected 11

months later in December, Rtest using the same set of five error measures.
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Finding 1: As before, the L0 measures are generally poor, indicating an inability to

calibrate well with the data using the criterion that the simulated traffic value must match

the empirical value exactly. This again begs the question of whether this measure is too

difficult for complex problems. In fact there may by necessity be a trade-off where any

model that is able to fit this measure well, will also not be very generalizable. The best

model for this measure may very well be a model which does nothing but specify the exact

values of all of the links, which is a model that could not be applied to any other network

or dataset.

Finding 2: The Lp results are not substantially worse on the December data than they

are on the January data. For instance, for the L1 measure the error only goes up by 10%,

though the increase in error appears to go up as you move toward L∞, which indicates that

the model is matching the same quantity of data points, but the magnitude of the worst

difference is growing. Given the fact that the model was trained on a different dataset

(some empirical results indicate that these two datasets have very different traffic patterns),

this indicates that the parameter settings that the GA discovered using the various error

measures on the January dataset are somewhat generalizable.

Finding 3: The relationship between the results within the correlation measure has

changed. Though L1, L2, and L∞ all do worse with regards to the correlation measure than

they do on the January dataset, L0 actually does better in terms of matching correlation

values than it does on January dataset and approaches the correlation value achieved when

the fitness function is in fact the correlation measure. This seems to indicate that though

the L0 measure is a difficult error measure to use as calibration the parameter settings that

it generates may be useful with regards to other error measures.
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Settings corr L0 L1 L2 L∞

GA-corr 0.72 (0.0002) 2912 (15) 44364 (73) 7246 (49) 6190 (45)
GA-L0 0.33 (0.0068) 2811 (17) 42364 (135) 4198 (40) 2906 (49)
GA-L1 0.30 (0.0048) 2836 (13) 42744 (67) 5977 (39) 3406 (51)
GA-L2 0.02 (0.0039) 2883 (12) 40499 (104) 3197 (4) 2211 (2)
GA-L∞ 0.20 (0.0056) 2959 (10) 47293 (84) 3527 (17) 1743 (23)

Calibration results on the comScore December testing data.

Settings corr L0 L1 L2 L∞

GA-corr 0.41 (0.0014) 2843 (14) 48843 (64) 9515 (46) 5260 (48)
GA-L0 0.37 (0.0024) 2799 (15) 45482 (114) 6792 (48) 4584 (67)
GA-L1 0.24 (0.0031) 2806 (13) 46145 (93) 7513 (40) 3915 (52)
GA-L2 0.03 (0.0058) 2860 (14) 44480 (109) 4774 (5) 3324 (5)
GA-L∞ 0.08 (0.0029) 2923 (12) 50911 (75) 5238 (17) 3343 (0)

Calibration results on the comScore December testing data.
Table 7.2. Calibration measure comparison on comScore training and testing
datasets. Each cell gives the mean (and stdev) from 30 replicate simulations.
The best GA-found parameter settings when optimizing using each calibration
measure on the January training data were evaluated against the January data
(top) and the December data (bottom) using all five calibration measures.
The best calibration value for each column is shown in bold (correlation is
maximized, whereas the Lp error measures are minimized). (For December,
there was no clear best L0 measure.)

7.6. Genetic Algorithm Search Dynamics

7.6.1. Impact of epistatic chromosomal interactions

As mentioned in Section 7.4.2 above, we purposefully introduced epistatic interactions into

the GA’s genotype with the goal of improving performance when searching through the

high dimensional parameter space. This also had the effect of causing the GA to more

frequently sample simpler ranking strategies, which is beneficial from the perspective of

Occam’s razor. We placed each boolean switch gene adjacent to the gene for the coefficient

that it epistatically controlled in order to promote linkage and make it more likely that the

switch and its coefficient would be inherited together during crossover.
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Figure 7.4. Parameter settings for the best individuals from the best GA-
searches for each of the five calibration measures for the January dataset.

When working with genetic algorithms, one quickly learns not to trust one’s intuitions;

the road to search performance purgatory is paved with seemingly good intuitions. So despite

the arguments made above, it was not clear that the engineered epistatic interactions would

be beneficial. In fact, one could make a counter argument that they might be harmful
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because the addition of the switches increased the size of the genome, and thus the size of

the search space, which could plausibly contribute to worse performance.

To empirically settle the matter, we performed 30 genetic algorithm searches both with

and without these epistatic switches, for the L1, L2 L∞, and corr calibration measures,

and recorded the average search performance in each case. In no case was the performance

significantly better without the epistatic switches, and in several cases the switches resulted

in a large and significant improvement, as shown in Figure 7.5. These results confirmed that

the addition of boolean switches for epistatic interactions in the genotype can significantly

increase the GA’s performance. It could be that for this problem better solutions tend to

involve fewer ranking coefficients, and thus the introduction of the switches biased the search

toward more fruitful areas. Alternatively, the ability of the GA to manipulate the complexity

of the problem on the fly (by turning switches on or off) may have contributed to the GA’s

success. In either case, this relatively simple addition to the genotype to promote epistatic

interactions had a noticeable performance benefit, and it may provide a generally useful

technique for similar ABM exploration situations.

7.6.2. Deception in real-world fitness functions

Significant research in genetic algorithms has focused on the characterization of those types

of problems that are difficult for genetic algorithm (or other metaheuristic search techniques,

like hill climbers) to solve. In particular, this led to the notion of “deceptive fitness functions”

[D. Goldberg, 1987; Whitley, 1991; Horn & Goldberg, 1994], which are (broadly speaking)

fitness landscapes that have local optima with large basins of attraction that tend to lead

the search process away from superior global optima. While there has been some criticism

of specific formulations of deception and its analysis with relation to genetic algorithms
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Figure 7.5. For several of the calibration measures (such as the L1 and L∞

searches shown here), the GA search performance was significantly improved
by the use of epistatic switches controlling whether certain model parameters
were allowed to vary or not.

performance [Grefenstette, 1992a; Forrest & Mitchell, 1993], it remains an important concept

in the study of metaheuristic search and optimization. Most studies of deception have focused

on artificially constructed functions (e.g., N-bit traps, ), and there have been informal claims

that deception might be irrelevant to real-world problems [Jones & Forrest, 1995]. Thus, it

seemed noteworthy when we discovered evidence that was highly suggestive of a deceptive

fitness function, when performing a follow-up experiment.

Specifically, we ran additional genetic algorithm searches directly on the testing dataset

(December comScore) to determine the best calibration that was achievable on that dataset.
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In general, these experiments confirmed that there was better calibration possible than had

been achieved using the training set calibrated parameters. This was an expected result,

and not particularly interesting. However, in the process of examining those results, we

noticed an interesting pattern among the best solutions found when calibrating for correla-

tion on this December dataset. As shown in Figure 7.6, the results generally fell into two

clusters: those that achieved decent correlation (around 0.7) and those that achieved better

correlation (around 0.8). Furthermore, these clusters in fitness value also corresponded to

clusters within the parameter space. Several parameters varied between the clusters, but an

easily distinguishable feature was that the better fitness cluster had no-backtrack = FALSE,

whereas the worse fitness cluster had no-backtrack = TRUE. In essence, these groupings

represent qualitatively different parameter settings, not merely quantitative variation around

similar parameter settings. The other interesting facet was that the vast majority of searches

ended at the inferior parameter settings. This shows that the representation of the search

space and fitness function tend to lead the genetic algorithm to a suboptimal solution (per-

haps because fitness improvement is easier early on in the search process when no-backtrack

= TRUE).

These results indicate that for this specific problem, we are dealing with at least a mildly

deceptive fitness function. For that matter, if a fitness function were strongly deceptive

enough, we might never even realize it, if the genetic algorithm never found the true optima,

and was always led to the suboptimal solution. This is a fundamental issue, and there is

no guaranteed way to avoid it. Various approaches have been suggested to help genetic

algorithms cope with deceptive problems (e.g., messy GAs [D. Goldberg, Korb, Deb, et al.,

1989]), and often changes in chromosomal representation for the genetic algorithm can suffi-

ciently rearrange the fitness landscape to decrease deception. Moreover, while it is desirable
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Figure 7.6. Distribution of fitnesses of the best parameter settings found when
searching directly for best correlation with the December comScore dataset.
Most of the 30 searches ended up at a suboptimal fitness peak, but a few were
able to find a better solution (that included enabling backtracking for the web
surfer agents). This strongly suggests that maximizing the correlation fitness
function was a “deceptive” problem, in that local optima with large basins of
attraction tend to lead the search process away from superior global optima.

to find the global optimum in a search space, there are many cases of ABM exploration where

finding very good optima is sufficient to the task, regardless of whether they represent the

absolute best parameter settings or not. In any case, it was interesting to witness evidence of

a deceptive fitness function “in the wild” – that is, in the context of this real-world problem

of model calibration, rather than in an artificially constructed functions where it is typically

discussed.



244

7.7. Conclusion and Recommendations for Future Work

In this chapter, we explored the concepts of calibration and validation of an agent-based

model using a variety of error measures in the context of an evolutionary algorithm. We have

explored five different measures in the context of both a toy problem and a difficult real-world

problem. We have shown that there is not an easily defensible Pareto optimal error measure

that works in all cases, but we have illustrated what benefits and disadvantages each of

these measures could have on model calibration using an evolutionary algorithm. To further

explore trade-offs between different calibration measures, it might be useful to use multi-

objective optimization to search for multiple calibration measures simultaneously, and thus

reveal a Pareto front that will characterize trade-offs between different calibration measures

[Narzisi et al., 2006]. As a side point, the benefit derived from expanding the genotype search

space using epistatic boolean interactions also deserves further investigation. While genetic

algorithms offer a promising technique for calibrating ABM parameters, one must give careful

consideration to the choice of calibration measure. Different calibration measures provide

varying levels of efficiency as fitness functions for performing this calibration, and can lead

to varying results. Thus model analysts would be wise to try several different calibration

measures when attempting to calibrate a model.
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CHAPTER 8

Fitness Caching in Noisy/Stochastic Environments

“It’s a good thing to have all the props pulled out from under us
occasionally. It gives us some sense of what is rock under our
feet, and what is sand.”

– Madeleine L’Engle

“Nothing is built on stone; all is built on sand, but we must build
as if the sand were stone.”

– Jorge Luis Borges

Uncertainty is endemic to the human condition, as well as to the analysis of agent-based

computer simulations. Consider the Wolf Sheep Predation model [Wilensky, 1997e] discussed

in Chapter 3. Using the exact same parameter settings, one could run the model one million

times, and every single time the wolf species could go extinct before 1000 model ticks have

passed. Even so, we cannot be absolutely certain that on the next run the wolf species won’t

thrive indefinitely. This would be a very unlikely outcome – but we cannot be positive that

it would not occur. This is the substrate on which we must build our model analysis –

constructed on the “sands” of confidence and likelihoods, but never proved with the stable

“rock” of certainty. Through effort and examination, uncertainty can be reduced, but it

cannot be eliminated, and thus it must be faced and lived with. Likewise, intelligent search

processes (such as genetic algorithms) must confront this uncertainty when they are applied

to ABM exploration and analysis tasks. There are methods of dealing with uncertainty that
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are more effective than others, and it is desirable to both understand and quantify how

uncertainty impacts our attempts at model exploration and analysis. This is the subject of

this chapter.

However, rather than focusing specifically on the domain of agent-based modeling, the

work presented here is sufficiently general to apply to any situation where fitness evaluations

are noisy but the uncertainty can be reduced by additional sampling. Compared to prior

chapters, this chapter will place a stronger emphasis on a mathematical/analytic treatment

of the problem, from first principles, although it will be accompanied by empirical results on

traditional test-bed fitness functions. In order to make the analysis tractable, we will focus

primarily on the impact of noise on the simpler random-mutation hill-climbing (RMHC)

algorithm (which is similar to a 1 + 1 evolutionary strategy), rather than facing the full

complexity of the genetic algorithm. However, disregarding the crossover operator (which

dynamically deforms the fitness landscape according to the genetic makeup of the current

population), the GA’s mutation operator navigates the same fitness landscape as the RMHC

(and thus the GA resembles a parallel population-based hill-climber with dynamic realloca-

tion of hill climbing resources). In short, although the GA is a more sophisticated search

algorithm, theoretical analysis of the fitness landscapes for RMHC provides a reasonable

first-order approximation for analyzing GA performance with the same fitness functions.

More pragmatically, first-principles theoretical analysis of GA’s performance has (thus far)

proven infeasible without making significant simplifying assumptions.

Here is the central dilemma: given a noisy metric on an arbitrary agent-based model,

how many times should one run the model in order to reduce the noise such that an adaptive

search process (such as a genetic algorithm) can make positive progress through the space

and arrive at good solutions? Without fitness caching, it may be possible to run only a
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single replicate (thus getting a very noisy signal), but give the genetic algorithm a large

population, so that even though many individual fitness comparison may be wrong, on

average, the genetic algorithm may still make progress. Another way of considering this, is

that an individual with poor fitness may last a while in the population by getting lucky with

the noisy fitness evaluation, but over time it will probably be weeded out. However, when

using fitness caching, the same point will never be evaluated again in future generations,

since the cached value will then be used instead. With caching, rather than taking noisy

measurements each time from the true fitness landscape, the situation is equivalent to having

a frozen (incorrect) landscape, due to displacement of each point by noise. In this case, the

choice of sampling replications is even more crucial, since it will determine not just how

long it might take to reach an optimal value, but whether it is possible to reach it (and

recognize it) at all. One extreme approach would be to run numerous replicates of the model

and reduce noise to a very low level. However, this is wasteful, since evolutionary search

does not require perfect values to operate efficiently. This chapter formally investigates this

trade-off in an attempt to develop heuristics for quantifying search degradation due to noise,

and help predict an appropriate level of sampling.

For many large-scale combinatorial search/optimization problems, meta-heuristic algo-

rithms face noisy objective functions, coupled with computationally expensive evaluation

times. In this chapter, we consider the interaction between the technique of “fitness caching”

and the straightforward noise reduction approach of “fitness averaging” by repeated sam-

pling. While both of these techniques are being used in practice, the interaction between

them has not been previously investigated, and it is important to applications such as ABM

exploration (among others). Fitness caching changes how noise affects a fitness landscapes,

as noisy values become frozen in the cache. Assuming the use of fitness caching, we seek
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to develop heuristic methods for predicting the optimal number of sampling replications for

fitness averaging. We derive two analytic measures for quantifying the effects of noise on

a cached fitness landscape (probabilities of creating “false switches” and “false optima”).

We empirically confirm that these measures correlate well with observed probabilities on a

set of four well-known test-bed functions (sphere, Rosenbrock, Rastrigin, Schwefel). We also

present results from a preliminary experimental study on these landscapes, investigating four

possible heuristic approaches for predicting the optimal sampling, using a random-mutation

hill-climber with fitness caching.

8.1. Motivation

There are a number of problem features that universally pose challenges for all meta-

heuristic search/optimization processes: predominant among these are noise/uncertainty,

and the slowness of fitness evaluation (i.e., the time necessary to evaluate the objective func-

tion for any point in the search space). The presence of noise in a fitness function impedes

making accurate comparisons between candidate solutions, or knowing how close the search

process is to reaching a certain performance objective. In many cases, it is possible to use

an average of many independent fitness function evaluations in order to reduce the noise.

The length of time required for a single fitness evaluation can be significant, as it expands

the length of the search by a direct multiplicative factor, and limits the number of evalua-

tions possible for the search. Sometimes it is possible to use a less accurate surrogate fitness

function, which can be evaluated more quickly, but at the cost of additional noise in the

fitness estimates (for a survey of fitness approximation, refer to [Jin, 2005]). In general, it is

impossible to eliminate both of these problem features, although there are many problems

where trade-offs can be made between the two.
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When fitness evaluation is particularly computationally expensive (e.g., in large complex

simulations), it is sometimes attractive to cache fitness values for re-use, to save the cost

of re-evaluating them again later. At least in some non-noisy optimization problems, this

has been shown to be an effective approach for reducing total computational cost [Kratica,

1999; Kratica et al., 2001], and we believe there is potential for applying it to noisy search

spaces as well. In this work, we apply a combination of formal and empirical methods to

try to investigate the relationship between fitness caching and the noise reduction technique

fitness averaging by repeated sampling. In noisy environments, too little sampling can make

the search untenable, whereas too much sampling can be unacceptably slow. Somewhere in

between, there exists an ideal number of sampling repetitions, or “sweet spot”, where the

search most efficiently reaches a desired fitness level. Assuming the use of fitness caching,

and using only information that can be extracted from the fitness landscape with reasonable

efficiency, we would like to be able to predict where this “sweet spot” will fall.

The basic intuition motivating this research is that some landscapes are much more sen-

sitive to the effects of noise than others, with regard to movement through these landscapes.

For instance, a landscape that contains large steep mountains may be easily traversed to

values of high fitness, despite the presence of significant noise, whereas even a small amount

of noise may cause a landscape comprised of gentle slopes to become unnavigable. It would

be very useful to have an efficient method of assessing the robustness of a landscape with

respect to noise, in order to choose an appropriate sampling rate when applying a meta-

heuristic search technique to the problem. The current study investigates the correlation

between the distribution of fitness gradients throughout the landscape and the deleterious

effects of varying levels of noise on landscape traversal.
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This chapter begins by situating the present work in the context of related research

in the field. We then propose two measures to quantify the impact of noise on search

processes within fitness landscapes: the probability that noise generates false local optima

in the landscape, and the probability that noise will result in an incorrect choice when

comparing two neighboring locations in the space. We offer mathematical expressions for

these two measures, which are numerically confirmed by Monte Carlo simulations of the two

respective probabilities, on a set of four well-known test-bed functions (sphere, Rosenbrock,

Rastrigin, Schwefel). Next, we discuss how these measures could be used in heuristics for

choosing an optimal sampling number for noise reduction. We then present the results of an

experimental study where we empirically determine optimal sampling rates on the four test

landscapes, given a straightforward local search technique (stochastic hill climber) that uses

fitness caching, and compare the potential of four heuristic approaches to predict the “sweet

spot” for noise reduction. The chapter concludes by presenting several avenues for possible

future work in this vein.

8.2. Related Work

The beneficial effects of fitness caching (specifically for genetic algorithms) have been

discussed by Kratica [Kratica, 1999], and also applied to a practical problem (plant loca-

tion) in [Kratica et al., 2001]. In [Kratica et al., 2001], the authors note that one of the

conditions for successfully applying fitness caching is a large evaluation time for the fitness

function. One real-world example where fitness caching may be beneficial is the the op-

timization of simulation parameters, since complex simulations may require long running

times. However, another aspect of many real-world optimization problems is the presence of



251

noise or uncertainty. For example, a recent instance of fitness caching [Stonedahl & Wilen-

sky, 2011] (see also Chapter 4) used two meta-heuristic search algorithms (hill-climbing and

genetic algorithms) to explore the parameter-space of several agent-based simulations of

biologically-inspired flock formation. In this case, the multi-agent simulations were stochas-

tic, resulting in noisy fitness evaluation; however, the interaction of fitness caching with the

noise was not explored. The situation is similar for many related problems involving the

exploration of multi-agent based simulation, including parameter optimization [Stonedahl et

al., 2010] and calibration and sensitivity analysis [Stonedahl & Wilensky, 2010b] (see also

Chapters 5 and 6). Moreover, while there is a potential benefit for fitness caching, even in

noisy environments, we are unaware of prior work discussing the use of fitness caching in

noisy/uncertain optimization problems, or examining the potential repercussions for search

performance in detail.

Considerable research has been done in the general area of meta-heuristic search and

optimization in noisy fitness landscapes, and it remains a topic of considerable interest. For

example, recent work spans from developing efficient techniques of determining the best

individual from a noisy population [Jaskowski & Kotlowski, 2008], to defining standard sets

of noisy functions for benchmarking different optimization techniques [Hansen, Finck, Ros,

& Auger, 2009b]. The volume and breadth of work in this area is beyond the scope of this

thesis; for a comprehensive survey of noise/uncertainty in evolutionary algorithms, see [Jin

& Branke, 2005].

It is worth highlighting some of the more closely-related research. One strand of research

concerns the analysis of search spaces or fitness landscapes, such as the study of Kauffman’s

NK-landscapes [Kauffman, 1993; Kauffman & Levin, 1987], similarly inspired tunable land-

scapes [R. Smith & Smith, 2001], as well as search performance on such landscapes (e.g.,
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[Merz & Freisleben, 1998]). Also particularly relevant is the work on adaptive walks through

noisy fitness landscapes [Levitan & Kauffman, 1995]. Our work also pertains to adaptive

walks (or local neighborhood-based search algorithms in general) in noisy landscapes, but

with fitness caching the noise becomes frozen, as we will discuss later. Also, because our

application interests are focused more on simulation parameter search rather than under-

standing of biological evolutionary processes, we chose to investigate landscapes based on

real-valued optimization benchmarks (see Section 8.2 below). So-called “fitness evolvability

portraits” [T. Smith, Husbands, Layzell, & O’Shea, 2002] appear to be another promising

direction for fitness landscape analysis. While Smith et al. [2002] did not address issues of

noise, in the future several of the ideas about characterizing the landscape at different fitness

levels might be productively incorporated on the sampling with fitness caching problem we

are addressing here.

Several prior works ([Fitzpatrick & Grefenstette, 1988], and more recently [Balaji, Srini-

vasan, & Tham, 2007]) have discussed/debated the relative merits of repeated sampling

for noise reduction versus alternative methods, such as increasing population size. How-

ever, when fitness caching is used, separate individuals in a population-based search do not

contribute independent fitness trials, so increasing the population offers no advantages in

reducing the impact of noise. Rana et al. [1996] examine the effects of noise on search

landscapes, in particular discussing the creation of false local optima and the soft annealing

of peaks (or “melting” effect, as referred to by Levitan and Kauffman [1995]). Our current

work is also interested in the creation of false local optima by noise, but the use of fitness

caching changes both the character and consequences of such local optima (as we discuss in

Section 8.3.1).
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Our work also follows that of Hughes [2000], which derived analytic expressions quan-

tifying the probability of one individual having a higher true fitness than another, given

noisy fitness evaluation, in the context of both single and multi-objective evolutionary algo-

rithms. Though several of the derivations are mathematically related, the measures we derive

attempt to characterize the fitness landscape as a whole, rather than a single comparison.

In summary, this investigation is the first to discuss and analyze the effect of fitness

caching in noisy fitness landscapes, and to develop preliminary heuristics for helping choose

the most effective number of sampling repetitions in this case.

8.3. Theoretical Analysis

We will begin from a theoretical perspective, offering a formal description of the problem,

and deriving several mathematical measures that may be useful, before we move on to more

experimental methods.

In this work, we will assume the presence of additive Gaussian (normally distributed)

noise with mean 0. The situation we are concerned with is the repeated sampling of a noisy

fitness function, and as a result of the Central Limit Theorem, the shape of the noise distribu-

tion will always approach a normal distribution when a reasonably large number of samples

is used. However, the mathematical derivations we present below could equally be applied

to other noise distributions, although the resulting expressions may be symbolically and/or

computationally cumbersome. If the mean value of the noise is unknown (and nonzero), then

regardless of any approach, it impossible to determine the true expected value of the fitness

landscape at any point; thus we will only consider unbiased noise with zero mean. We will

also assume that the variance of the additive noise is uniform across the search space – while

this is not always the case, it serves as a reasonable first-order approximation to simplify
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the analysis. The extension of considering noise with location-dependent variance is left as

future work.

We will also make the simplifying assumptions that there is ample memory such that all

encountered fitness values will be cached and are never cleared, and that the computation

time required for the caching is negligible compared to the time required for fitness evaluation.

These assumptions are realistic when fitness evaluation is particularly time-consuming, such

as when optimizing complex simulations with lengthy run-times. In this case, high-capacity

disk-based caching becomes a feasible approach, when the disk-access time for reading a

cached fitness value may be orders of magnitudes smaller than the run-time of the simulation.

8.3.1. Derivation of Measures

Let us consider a “true” (noiseless) landscape function L which has been obscured by some

amount of additive noise (N), which is drawn from a normal distribution with mean 0

and standard deviation of σ (N ∼ N (0, σ2)).1 We will assume the neighborhood-based

search, where the task is minimization (find x s.t. L(x) is a minimum). Without fitness

caching, each time a search algorithm evaluates a point x1 in the search space S (x1 ∈ S),

a new fitness value L(x1) +N is returned, where N is independently drawn from N (0, σ2).

Let x2 be a neighbor of x1, such that L(x2) is greater than L(x1) by a positive amount ε

(L(x2) = L(x1) + ε). This means that if the search process was repeatedly choosing whether

to move between x1 and x2, it would (probabilistically) end up at x1. With fitness caching,

this is not the case. Once fitnesses for x2 and x1 have been chosen, they are fixed, or frozen.

This caching is effectively the same as reading values from a new “frozen” noisy landscape

1In the context of real-world problems, it may be confusing to think of there being a “true” fitness landscape
with noise being added to it; alternatively, L may be viewed as the true expected value of the noisy function.
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Ln, which is generated from L by adding N (N ∼ N (0, σ2) to every location in X. If the

fitness value Ln(x2) turns out to be smaller than Ln(x1), then noise has caused a comparison

between two points to now be wrong (we will denote this as a “false switch”). This freezing

effect means that when fitness caching makes the impact of noise more serious. Furthermore,

rather than noise having a positive “melting” effect that can help a search process escape

local optima (as further discussed in [Levitan & Kauffman, 1995; Rana et al., 1996], and as

is implicit in the design of simulated annealing), fitness caching causes any new local optima

that are created by the noise to be “frozen” in place. We will denote local optima that are

present in Ln, but not present in the original L as “false optima”.

When faced with a new landscape to be searched, we do not know what the landscape

looks like. However, it is possible to probe the landscape for some information, before

starting a search process. Let us assume that we can obtain a reasonable estimate of the

true ε-distribution within the landscape. That is, we would like to capture the distribution

of fitness differences between neighboring points (L(xi) − L(xj)∀(xi, xj) ∈ S2 s.t. xi and

xj are neighbors in the space). We will denote the probability density function (pdf) for

this ε-distribution as P (ε). Note that the P (ε) distribution is symmetric with respect to 0

because the neighbor relationship is symmetric. (Monte Carlo sampling from Ln will give

an estimate of the noisy ε-distribution, which may be a tolerable approximation of the true

ε-distribution, or may need to be corrected for noise.)

Given the pdf P (ε), we will now derive expressions for the likelihood of noise creating

false switches and false optima, in terms of the standard deviation of the noise (σ).

For convenience, we will denote the pdf for the Gaussian distribution with mean value,

µ, and standard deviation, σ by f(x, µ, σ), defined as follows:
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Figure 8.1. This figure illustrates variables used to determine the existence of
a false switch. N1 and N2 represent the added noise to the original nodes, and
ε represents the vertical distance between the two original neighbors. False
switches occur whenever N1 is greater than ε+N2.
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8.3.1.1. False Switch Probability. In Equation 8.2 the inner integral represents the prob-

ability of the noise added to L(x2), N2 being less than the noise added to L(x1), N1. The

inner two integrals (together) represent the probability of a false switch for a given differ-

ence between neighbors’ real fitness values, ε. The outermost integral (integrating across all

possible εs) computes the probability of a false switch for a given ε-distribution P(ε).
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Equation 8.2 can be simplified to Equation 8.3, where Erf denotes the Gaussian error

function. It has been remarked in certain contexts [Hughes, 2000] that the Gaussian error

function (Erf) is computationally very time-consuming to compute, and that more efficient

(though slightly less accurate) approximations may be desirable. However, our approach is

to derive a measure that will characterize the robustness of the fitness landscape as a whole.

This is essentially an offline calculation which will be completed once before initiating a

search process, rather than an online calculation that must be run repeatedly during the

search process. Furthermore, since fitness caching is being used, there is an implicit as-

sumption that evaluating a single point from the fitness landscape takes orders of magnitude

longer than other operations, and the efficiency of numerical approximations is not a primary

concern.

Z ∞
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P (ε)
“

1− Erf
h ε

2σ

i”
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8.3.1.2. False Optima Probability. In order to obtain an analytic formula for the prob-

ability of creating false optima, we must make the additional simplifying assumption that

the distribution P (ε) is the same throughout the space – i.e., at every x, P (ε) is the same

regardless of L(x).

For an arbitrary noise distribution (P (N)), the probability of being a local optimum in

Ln is given by Equation 8.4.
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Similarly, the probability of a given point being a local optimum in both L and Ln is

given by Equation 8.5.
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False optima are points that appear as local optima after noise is applied, but were

not local optima before noise, thus the probability of being a false optimum is calculated

by subtracting Equation 8.5 from Equation 8.4. Equations 8.4 and 8.5 were for arbitrary

noise distributions, but since we are assuming all noise is additive Gaussian noise, we can

transform them into Equations 8.6 and 8.7 respectively.
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Given P (ε) (the probability density function for the ε-distribution of a fitness landscape),

we now have closed-form expressions for the probabilities of a “false switch” occurring be-

tween any two neighboring points, and the probability of any given point becoming a “false

optimum.”2

2Despite being closed-form mathematical expressions, numerical integration approaches will generally be
required, especially since P (ε) may be any arbitrary pdf.
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8.3.2. Fitness Landscapes

The abstract elegance of formally deriving mathematical measures or descriptive statistics

about fitness landscapes must be grounded by the study of concrete fitness landscapes.

This partially serves to validate the derivations, but more importantly it helps us judge

the appropriateness of any simplifying assumptions that were made in order to make the

mathematics tractable.

For our fitness landscapes, we selected four noiseless fitness functions that are often

studied in the context of real-valued black-box optimization, and which exhibit differing

landscape features (such as multi-modality/nonconvexity). Specifically, we chose the sphere,

Rosenbrock, Schwefel, and Rastrigin functions (adapted from [Hansen, Finck, Ros, & Auger,

2009a]). These noiseless landscapes are assumed to be the “true” underlying functions, which

we will combine with varying levels of additive Gaussian noise to create the “obscured” noisy

fitness landscapes that must be searched. Surface plots of the 2-dimensional versions of these

fitness landscapes are shown in Figure 8.2, shown for illustrative purposes to communicate

the general shape of these spaces. All results presented here used the 10-dimensional ver-

sion of these functions, where each dimension was discretized on the domain [−5, 5] at a

resolution of 0.05, creating a discrete search space of size 20110 ≈ 1.1 × 1023. The general

mathematical function to generate the N-dimensional case for each landscape is displayed

below the graphics in Figure 8.2.

In Figure 8.3, kernel density distribution plots3 show the ε-distributions (distribution of

differences between the “real” fitness values at neighboring locations in the fitness space)

3Kernel density distribution plots provide a way to visualize distributional information that avoids the
artifacts caused by bin-size choices in histograms.
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Figure 8.2. This figure shows 2-D versions of the sphere, Rosenbrock, Schwefel,
and Rastrigin functions we used as our fitness landscapes. The equations are
shown below each plot.

for each of these landscapes. Note that the different distributions vary significantly in shape

and range of values.

8.3.3. Empirical Measure Validation

We predicted the number of false switches and false optima in each fitness landscape using the

measures defined in Section 8.3 above and an approximate ε-distribution defined by sampling

5000 differences between neighbors’ real fitness values. Then we observed the real probability

of false switches being created by noise by testing 10,000 pairs of neighboring points, which
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Figure 8.3. This figure shows the ε-distribution (fitness differences between
neighboring locations) for each fitness landscape.

Figure 8.4. We predicted the probabilities of false switches and false optima
occurring using the measures presented in Section 8.3 and observed the actual
probabilities that each occurred by adding various amounts of noise to each
function and evaluating the resulting proportions of false switches and false
optima.
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were evaluated before and after varying amounts of Gaussian noise was added. Similarly,

we used a Monte Carlo method (testing 10,000 points) to estimate the real probability that

a point becomes a false optimum as a result of differing magnitudes of Gaussian noise. As

shown in Figure 8.4, the formulas we derived for these two measures closely approximate the

directly observed measures.

8.4. Experiments

We are further interested in whether these or other simple measures can be useful in

predicting the performance of an evolutionary search technique on a noisy landscape. In

particular, it would be most useful to be able to choose the number of times a noisy function

should be evaluated and averaged, to enable a search mechanism to reach very good locations

in the space with as few function evaluations as possible. Specifically, we ran experiments

at varying noise levels to determine the number of evaluations required by a stochastic hill

climber to reach an average fitness value that is in the best 0.0001% of the landscape. These

numbers of evaluations are then scaled by the number of times the function would need to

be evaluated to reach their respective noise levels. The pseudocode for the simple random-

mutation hill climbing algorithm is given in Table 8.1.

The noise level (standard deviation of noise) for which the search progresses most rapidly

is denoted σideal (which will vary for each landscape). See Figure 8.5 for an illustration of

this process.

We considered four heuristic methods for using a landscape’s ε-distribution to predict

σideal and compared the number of evaluations required by the hill climber at each method’s

predicted σideal to those required at the true σideal.
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Given a (memoizing) noisy landscape function Ln,
and a function neighbor(x) which returns a new
location by increasing or decreasing x along a single
randomly chosen dimension:

1. Let xbest = ∅
2. Choose x randomly from S (the search space)
3. If xbest = ∅ or Ln(x) < Ln(xbest): Set xbest = x
4. If evaluation limit exceeded: Return xbest.
5. If x has been compared to all of its neighbors

and is a local minimum: Go to Step 2.
6. Let x′ = neighbor(x)
7. If Ln(x′) < Ln(x): Set x = x′

8. Go to Step 3

Table 8.1. Pseudocode for a random-mutation hill climber, which restarts
when stalled.

Figure 8.5. a) Each shaded line shows fitness values reached after some number
of evaluations, for a given noise level, σx. Using this information we calculated
the number of evaluations it took to reach a threshold value, and scaled this
by the number of replicate evaluations required to reduce noise to the specified
level (σx). b) This scaled number of evaluations is plotted at each noise level.
We denote the noise level corresponding to the minimum number of evaluations
as σideal, which is the “sweet spot” target for noise reduction.

The four heuristics for predicting σideal are listed below. In order to calibrate the heuris-

tics, it was necessary to use scaling factors based on the true σideal for the landscape. We
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then tested the heuristics by applying them to each landscape in turn, in order to evaluate

whether they could capture the differences between the landscapes.

• Fixed Noise Level: The geometric mean of the σideal for each landscape is 1.91

and this constant noise value was used as the σFixed Noise Level. This is the most

näıve heuristic, as it treats all landscapes the same, without making use of the ε-

distribution information at all. It is included mainly as a baseline for comparison.

• Direct Ratio: The geometric mean of the ratio of the median of each ε-distribution

to the σideal for each landscape is 3.97. We calculated σDirect Ratio by dividing the

median of each landscape’s ε-distribution by this ratio.

• False Switch: The geometric mean of the proportion of false switch values corre-

sponding to the σideal for each landscape is 0.084. The standard deviation of noise

which predicts a proportion of false switch value of 0.084 is the σFalse Switch

• False Optima: The geometric mean of the proportion of false optima values corre-

sponding to σideal for each landscape is 5.16× 10−5. The standard deviation which

predicts this value is the σFalse Optima.

8.5. Results and Discussion

To compare these methods on each of the four landscapes, we calculate the inefficiency

ratio as the number of evaluations required by each method’s prediction for σideal (i.e.,

σFixed Noise Level, σDirect Ratio, σFalse Switch, σFalse Optima) divided by the number required at

the true σideal. Note that an inefficiency ratio of 1.0 would be a perfect prediction, and also

that ratios higher than 20 have been cut off, due to computational constraints.

To summarize the performance results from Figure 8.6:
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Figure 8.6. This figure shows how inefficient the standard deviation chosen
by each method is by calculating the ratio of evaluations to that required at
optimal noise level, σideal. A perfect solution would have an inefficiency ratio
of 1.0.

(1) None of the methods performed well on the Rosenbrock landscape. The Rosenbrock

function is sometimes referred to as a “banana function” due to its long bending

valley which must be followed to reach the global optimum. The failure to predict

an optimal level of noise may be due in large part to the importance of traversing

this valley, where the fitness gradient is not very strong. In other words, the initial

sampling of the whole space to determine the ε-distribution is misleading, since a

particular region of the space (the valley floor) is much more important for search

performance than the space at large, and requires lower noise values to traverse.

(2) The fixed noise level method performed quite poorly on all but one landscape.

In general, this is not too surprising. We expect that different landscapes will

require different optimal noise levels, and choosing a fixed level value to apply to all

landscapes is unlikely to perform well.

(3) There is no clear winner among the other three methods: the false optima and direct

ratio methods were each best on certain landscapes, but the false switch method also

generally performed well. This result is somewhat disappointing, in that heuristics
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using our derived metrics (false switches and false optima) do not have a strong

advantage over the simpler approach (direct ratio) of scaling by the median value

from the ε-distribution.

While these results are not decisive, it is somewhat encouraging that the three methods

using information from the ε-distribution serve as better predictors than the most naive

approach. This shows that the heuristics used are at least partially correlated with choices

for σideal, and perhaps improved mappings may be developed along similar lines, in order to

offer prescriptive guidelines for choice of sampling repetitions based on this information.

8.6. Future Work and Conclusions

The experimental results we have presented are based only on an examination of four

fitness landscapes, which is too small to be a good representation of the types of fitness land-

scapes encountered in real problems. Furthermore, it has been argued that some of these

particular test landscapes may not be the most appropriate choice for benchmark functions

for evolutionary algorithms [Whitley, Mathias, Rana, & Dzubera, 1995]. Accordingly, fur-

ther studies along similar lines are called for, involving a greater diversity of noisy fitness

landscapes.

However, perhaps a more significant challenge for the current approach is that the search

performance on these landscapes appears to be significantly different enough that none of the

heuristics we investigated served as a good predictor for all four landscapes. In particular, the

failure to predict a good noise level for the Rosenbrock landscape merits further investigation.

It is possible that a fundamentally different approach will be needed. One hypothesis is that

knowledge of the global ε-distribution for a landscape is insufficient to make a good prediction

of what the optimal noise level would be, and thus additional knowledge is required. This may
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be because intelligent search techniques find relatively good solution areas quickly, and thus

spend very little time in the large poor-performance areas of the space, in which case a more

biased approach for sampling ε-distributions might be fruitful (e.g., taking inspiration from

[T. Smith et al., 2002]). For instance, one could imagine running a sequence of searches,

bootstrapping the ε-distribution from the points that were encountered by the previous

search on the noisy landscape, thus refining the estimates for optimal sampling choices in

later searches.

In addition to their role in meta-heuristic search processes, fitness landscapes also play

an important role in the study of many complex systems, and may provide a lens for view-

ing adaptive or evolving systems in new and enlightening ways (c.f. Kauffman’s work on

evolutionary landscapes [Kauffman, 1993]). It would be interesting to investigate whether

there are interdisciplinary implications for studying frozen noisy landscapes, in relation to

processes that occur in real biological systems.

An improved understanding of the extent to which noise can be present in a fitness land-

scape without seriously inhibiting successful search and adaptation in that space is a broad

but desirable goal, which would significantly advance the field of search/optimization when

dealing with uncertain problems. Our present research provides some progress toward this

goal in the specific context of fitness caching, but the path is far from clear, and significant

work remains to be done in this direction. The lack of prior literature on fitness caching

with noise may suggest either that the combination has not been given serious considera-

tion, or possibly that fitness caching is not an advisable approach when dealing with noisy

search problems. While we believe that in many cases it would still prove beneficial, this

is ultimately an empirical question, and one that we hope will be resolved by future work

using fitness caching in noisy environments.
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In conclusion, this chapter offered a brief foray into the study of the interactions between

noisy landscape sampling and fitness caching. We presented and verified analytic formulas

for two measures that could be useful for predicting the impact of noise on the performance of

fitness-caching neighborhood based meta-heuristic search processes in discrete fitness land-

scapes. We also explored several heuristics for choosing an optimal sampling level under

these conditions, and while none of these heuristics offer perfect solutions to this problem,

they could provide reasonable initial choices when there is no a priori information about

what sampling level to use for an unknown fitness landscape. Additionally, they provide a

starting place for developing better heuristics for this problem. However, further research is

required before we can offer prescriptive recommendations for noise level reduction method-

ology. Some of the necessary research is carried out in Chapter 9, where varying levels of

samples are used for noise reduction in the fitness landscapes associated with real ABM ex-

ploration tasks, using a wider variety of search algorithms (hill climbing, genetic algorithms,

simulated annealing, and random search), and comparing the results both with and without

fitness caching.
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CHAPTER 9

Comparative Benchmarking in ABM exploration

“There is nothing like looking, if you want to find something...
You certainly usually find something, if you look, but it is not
always quite the something you were after.”

– J.R.R. Tolkien, The Hobbit

“All generalizations are false, including this one.”
– Mark Twain

As Tolkien reminds us, the act of searching for something does not ensure that you will

find it. Often you may find something else instead, which may be interesting in its own

right, but isn’t what you set out to find. When exploring the parameter space of agent-

based models, this can be beneficial, since each interesting finding may shed light on some

aspect of model behavior. Nevertheless, there are many situations where you have a specific

goal in mind (e.g., finding vee flock formations, or calibrating a model to real-world data),

and you really do want to find parameters that best accomplish that specific task, rather

than parameters that do something else. Thus, it is important to measure the efficacy

of search methods in performing ABM exploration tasks. The case studies presented in

Chapters 4–7 already showed that genetic algorithms were useful and effective for ABM

exploration tasks, by digging deep into relevant research-caliber modeling problems. In

contrast, the focus of this chapter is on breadth, not depth. This chapter provides the first

large-scale comparative study of the genetic algorithm’s performance on a wide variety of



270

models and tasks, with various levels of sampling, both with and without fitness caching,

and judged against other blackbox metaheuristic search algorithms including random search,

hill climbing, and simulated annealing.

No set of experiments in this domain can be truly comprehensive, as countless other agent-

based models could be explored, and there is also no shortage of metaheuristic search algo-

rithms (such as particle swarm optimization [Kennedy et al., 1995], and harmony search[Geem,

Kim, & Loganathan, 2001]) that remain untested. However, unlike prior studies that focused

on a single model or a single search algorithm, this work provides the breadth necessary to

draw more general conclusions about genetic algorithms’ relative efficacy. It also provides

some observations regarding the prevalent stochasticity of ABMs and its impact on search

performance, and analyzes the utility of fitness caching for real-world problems. This rigor-

ous set of experiments has been performed to obtain sufficient sample data to judge statistical

significance, and as a result we can observe general trends and interesting patterns in the

data. Generalizations are dangerous creatures, however, as Mark Twain mirthfully reminds

us. I will leave it to the reader to decide whether all generalizations are indeed false, but the

broader point stands that one must be cautious in applying them. Thus, this work presented

in this chapter has no grandiose aspirations of being the last word on the subject. Rather, I

view it as the opening sentence toward a healthy debate about search algorithm performance

in this domain. Some may criticize my (necessarily constrained) choices of certain search pa-

rameters (e.g., the GA’s mutation rate, or the cooling schedule for simulated annealing), and

perform follow-up studies examining alternative choices. Others may discover that search

performance differs on the specific model they are exploring, and wish to compare their ABM

search task against the tasks described here. Arguably, the greater contribution of this chap-

ter may be in developing a benchmark set of models and tasks to productively frame this
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discussion, rather than in the specific numerical results obtained (although these results are

themselves interesting). (The benchmark tasks, as concrete implementations of the QBME

framework laid out in Chapter 3, are also valuable for demonstrating the breadth of model

exploration tasks and how they can be successfully posed using a search-based paradigm.)

Finally, we take inspiration from an erudite epigram of Turing award-winner Alan Perlis

[1982]: “Simplicity does not precede complexity, but follows it.” So it is with the messy task

of evaluating the performance of metaheuristic search algorithms. Only by wading through

a sea of complex processes and data can we arrive at the far shore where we will discover

simple guidelines and practicable solutions. One can stand forever on the shore, hoping

the ocean will be shallow, the water will be warm, and that there aren’t any sharks – but

progress will never be made until we get our feet wet!

9.1. Description of Models and Tasks

This chapter presents a study of genetic algorithms with regard to their suitability for

various tasks related to the development, exploration, and analysis of agent-based mod-

els. Specifically, we perform a comparative analysis of genetic algorithms against a base-

line method (random search), as well as two comparable metaheuristic search techniques

(random-mutation hill-climbing and simulated annealing). Because this is the first com-

parison of its kind, there is no standard set of tests or benchmarks in this domain against

which search methods may be compared. We chose a range of models (simple, classic, and

complex) and designed relevant model exploration tasks associated with each model. These

“benchmark” tasks provide a basis on which the search methods will be judged. We selected

models from the NetLogo sample models library, which is a large collection of agent-based
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Model Description Task Dim.

Fire forest fire spread find phase transition 1
Segregation early social science ABM find causes of segregation 2
Ants ant food foraging find most efficient foraging 2
Fireflies synchronizing flashes what encourages synchrony? 4
Flocking flock/swarm motion search for volatility 5
Daisy World illustrates Gaia hypothesis model error checking 6
Ethnocentrism evolution of ethnocentrism extreme scenario

discovery & comparison
6

Heatbugs abstract bio-inspired model agent clustering/congregating 7
Wolf Sheep
Predation

population dynamics model calibration 9

Table 9.1. Benchmark ABMs and associated tasks chosen for evaluating search
methods. The models are listed in increasing order of search space dimension-
ality (shown in the right-most column), which is equal to the number of free
model parameters in the search task.

models ranging from simple example models to replications of published research models

from various disciplines. The list of models/tasks is shown in Table 9.1.

These tasks were purposefully chosen to contain considerable variation in complexity and

search difficulty. While search difficulty is challenging to quantify (a priori), one contributing

factor is the dimensionality and size of the search space to be explored. In particular, the

four earlier tasks (in Table 9.1) were chosen such that the search space was small enough to

be fully enumerated (exhaustively explored). In other words, for these models it is possible

to sample all combinations of settings of the free parameters with sufficient resolution (and

with ample repeated sampling for statistical confidence) to obtain a “ground truth” map of

the fitness landscape. This “ground truth” landscape will be useful for determining whether

search processes have indeed found global optima, or whether they have become trapped in

local optima (if they exist).
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Despite their simplicity, these modeling tasks are not mere toy examples – they represent

interesting questions about model behavior of real agent-based models. However, sophisti-

cated search methods such as genetic algorithms are possibly unwarranted on these smaller

search spaces; it is feasible to do a factorial-design enumeration of the space, which would

give complete confidence in the results. Even so, having an efficient search mechanism to

more quickly answer questions about the model in a heuristic manner is still useful, particu-

larly for exploratory analysis of model behavior. Furthermore, these tasks provide a baseline

that we would want any more sophisticated parameter search technique to handle without

difficulty. Although the search spaces and dimensionality are small, some of the character-

istics of the fitness landscapes encountered in these simple tasks may also be relevant to

larger higher-dimensional parameter spaces. On the other hand, it may only be in higher

dimensional spaces that a genetic algorithm will be able to take advantage of building blocks

(composed of sets of parameters), and higher dimensional spaces are also more likely to

have large numbers of local minima/maxima, so we must be careful about drawing general

conclusions from these simple cases.

The later five (higher-dimensional) tasks involve search spaces that are too large to be

enumerated in practice, so the true global optima is not necessarily known. However, these

tasks are arguably more realistic in terms of the number of parameters that one might be

searching in a typical ABM search task. Each of the search tasks will be described in greater

detail.1 The exact versions of the models used in the search experiments presented here are

available for download from: http://forrest.stonedahl.com/thesis/benchmark models

.zip.

1In fact, the level of detail in the sections below borders on the tedious – I apologize for this in advance, but
feel that little can be done to remedy this without sacrificing the scientific replicability of these experiments.
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Figure 9.1. The NetLogo Fire model user interface.

9.1.1. Fire (FireVariance and FireDeriv)

The NetLogo Fire model [Wilensky, 1997c] (see Figure 9.1) demonstrates a critical point (or

phase transition between two different behavioral regimes) in a simple percolation model.

The Fire model has just one parameter density, which controls the density of the forest.

While the simplicity of the model means that sophisticated algorithms are not necessary in

order to detect this phase transition, it will provide a straightforward test case for searching

for critical points, since the system’s behavior is already well understood.

We actually performed two separate search tasks with the Fire model2, though they both

had the same common goal of identifying the critical threshold for the density parameter. For

the FireVariance task, we searched for parameter settings that would maximize the standard

2Technical note: for our experiments the Fire model’s world size was reduced from 251x251 to 99x99 patches,
to improve efficiency. Qualitative model behavior was unaffected by this change. Unless stated otherwise,
all tasks are based on the models from the NetLogo 4.1.2 model’s library.
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deviation of the amount of forest burned (across multiple runs with the same parameters.

In other words, we’re looking for parameters where sometimes only a few trees burn and

sometimes the whole forest burns. For the FireDeriv task, we searched for parameter settings

that maximized the discretely approximated derivative (a.k.a. difference quotient) of the

average amount of forest burned with respect to the density parameter (∆density = 1.0). In

other words, we were looking for parameters where a small change in density would cause

a large change in the amount of forest burned. As mentioned in Chapter 3, these two

approaches highlight different aspects of phase transitions, but either can be used to identify

the phase transition in the Fire model. For both cases, the model is initialized (with the

SETUP procedure) and run (the GO procedure) until there are no fires remaining, at which

point we measure the percentage of the initial forest that burned. The density parameter is

allowed to range between 1% and 99% by increments of 0.01 (for a search space composed

of 9801 unique points). For both cases, the measures (derivative and variance-based) are

averaged across some number of repeated model runs (see the various sampling amounts in

Section 9.2.1 below) using the same parameter settings but with different pseudo-random

number generator (PRNG) seeds.

9.1.2. Segregation

The NetLogo Segregation model [Wilensky, 1997d] (see Figure 9.2) is a replication of one of

the earliest ABMs of how strong patterns of societal segregation may emerge from “weak

discrimination” by individuals, based on the work of Thomas Schelling [Schelling, 1978].

The characteristic result of this model is that there is a disproportionate macro-level re-

sponse to micro-level discriminatory practices. However, another surprising feature of this

model is that having individual agents each seek maximal similarity (that is, being highly
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Figure 9.2. The NetLogo Segregation model user interface.

discriminatory) yields much less overall segregation than if agents are only moderately dis-

criminatory. “Surprising” results like this are characteristic of the emergent behavior found

in many agent-based models. The explanation, in this case, is that when agents are too

strongly discriminatory (or “picky”), the model never settles down to a fixed equilibrium.

Agents continually move from one location to another, almost always remaining unhappy

with their surrounding neighborhood (unless the world population density is extremely low).

For this task, we searched for parameter settings that would result in maximal macro-level

segregation by varying two parameters: the number of agents (from 500 to 1500 by increments

of 10) and the percent-similar-wanted parameter (from 0 to 100 by increments of 1), which

controls the micro-level discrimination. The complete search space thus contains 10,201

points, which is very manageable for enumeration. The model was initialized (SETUP),

then run (GO) for 200 ticks (or until all agents were “happy” with their current locations),

after which the global percent-similar was measured. This measure (again averaged across

some number of repeated model runs) was maximized.
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Figure 9.3. The NetLogo Ants model user interface.

9.1.3. Ants

The NetLogo Ants model [Wilensky, 1997a] (see Figure 9.3) is a pheromone-based ant for-

aging model, which was previously used by Calvez and Hutzler [2005] for a case study on

using genetic algorithms for tuning parameters in agent-based models. Thus, this model is

a logical choice to allow comparison with previous work – specifically this task will mimic

Calvez and Hutzler’s Example 1, which is about searching for parameters that yield the

largest communal food harvest during a specified time period.

To compare results with Calvez and Hutzler, it was necessary to use an old version of

the NetLogo Ants model, since the Ants model included in the NetLogo model’s library

was revised in 2005 to use a larger world grid and have the food deposits positioned further

from the nest. This revision significantly changed the quantitative behavior of the model.

Unfortunately, Calvez and Hutzler did not explicitly state which version of the NetLogo
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Ants model they were using. Despite multiple attempts to contact the authors regarding

a number of unspecified details in their paper (primarily about the details of the genetic

algorithm they employed) I received no response. As a result, based on the publication date

of their paper (2005), I estimated they had used NetLogo 2.1, which was the latest publicly

released version of NetLogo in 2004. I also verified that there were no behavioral differences

between the Ants model in NetLogo 2.1 and the previously released version (NetLogo 2.0.2)

earlier in 2004, in case they had used that version instead. Furthermore, the NetLogo 2.1

version of the model qualitatively matches the model as depicted and described in Calvez

and Hutzler’s paper. Thus, I feel fairly confident that I am using the same model.

There are 3 explicit global parameters of this model (as well as several others implicit

within the model code, which could be parameterized), but Calvez and Hutzler fixed one

of them (the total number of ant agents) at the constant value of 10, thus allowing just 2

parameters to range freely during the search process. These two parameters are the diffusion-

rate (ranging from 0 to 99 by increments of 0.1) and the evaporation-rate (also ranging from

0 to 99 by increments of 0.1). (The complete search space size is thus 982081 - almost 1

million combinations.) For this task, we measure the total amount of food harvested by the

ants between 101 and 200 model ticks (inclusive), and we seek to maximize this measure

(averaged across some number of repeated trials).

9.1.4. Fireflies

The NetLogo Fireflies model [Wilensky, 1997b] (see Figure 9.4) examines mechanisms by

which fireflies might synchronize their flashing together, as exhibited in nature (e.g., Pterop-

tyx cribellata, Luciola pupilla, and Pteroptyx malaccae – particularly striking in the large
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Figure 9.4. The NetLogo Fireflies model user interface.

firefly swarms of Southeast Asia). The Fireflies model is based in part on the research of

Buck [1988] and Carlson and Copeland [1985].

In this model, there are two qualitatively distinct strategies (controlled by the strategy

parameter) that the fireflies can use to try to synchronize with each other: delay and advance.

For the most part, the delay strategy appears to consistently achieve global synchrony,

whereas the advance strategy seems less effective, particularly at synchronizing the whole

population. This is interesting, and begs the question: under what conditions is the advance

strategy most effective at creating synchrony? Thus, our search task for the Fireflies model3

fixes the strategy parameter to advance, and searches for parameters that lead to maximal

synchrony. The number (of fireflies) parameter range goes from 10 to 50 in increments of

5, the flashes-to-reset ranges from 1 to 4, the cycle-length ranges from 5 to 20, and the

flash-length ranges from 1 to 5. Although this task is searching a higher dimensional space

than previous tasks, the size of the search space (only 2,880 combinations) is actually quite

3Again, for efficient experimentation we use a version of the model with a reduced world size.
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small, due to the limited range and resolution for varying each parameter. For this task,

we designed a special synchrony-measure (included in the downloadable benchmark model),

which sums up the absolute difference (in modular arithmetic) between the internal clock

states of each firefly with every other firefly, and then transforms and normalizes this value

to be between 0 (unsynchronized) and 1 (completely synchronized). The model is initialized

(SETUP) and run (GO) for 2000 ticks, and for each run the median4 value of the synchrony-

measure between 1900 and 2000 ticks is reported. This median synchrony measure is further

averaged (using the mean, not median) across repeated model runs with the same parameter

settings.

9.1.5. Flocking

As described earlier in Chapters 3 and 4, the NetLogo Flocking model [Wilensky, 1998] is

based on Reynolds’ classic “Boids” [C. W. Reynolds, 1987], and seeks to produce realistic-

looking collective animal motion (such as flocking birds or schooling fish). This benchmark

task is very similar (though not identical) to the tasks discussed in Chapter 4. In this

case, we will be looking for flock volatility in the following sense: we are interested in what

parameter settings would cause all of the birds to be simultaneously turning by large amounts

at some point in the model (and we are curious to see what this pattern might look like).

More specifically, during each tick, we are looking at the absolute heading change for each

bird and choosing the minimum value across all birds. Thus, the turning measure is only

registering the “weakest link” – if a single bird isn’t turning at all, then the whole flock’s

volatility score for that tick is 0. However, we record the maximum of this measure across

4In some cases the median is a more appropriate measure of “average” or characteristic model behavior,
since it is not influenced by outliers.
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ticks (for 200 model ticks), so if there was ever a (simulated) moment when all of the birds

were drastically turning, we will capture it. Finally we take the average value across some

number of repeated model runs, and search to maximize this value. This task demonstrates

one of the many combinations achievable by combining/condensing measures across different

levels in different ways, as outlined in the QBME framework in Chapter 3.

The population parameter is fixed at 50 birds, but the five other model parameters are

allowed to vary as follows. The vision parameter ranges from 0 to 10, the minimum-separation

parameter from 0 to 5, and the max-align-turn, max-separate-turn, and max-cohere-turn pa-

rameters each from 0 to 20. In all cases, the increment of the range (resolution for searching

the parameters) is 0.25. Note that the size of the search space here has skyrocketed to over

450 million parameter combinations, and enumeration of this space (at this resolution) is no

longer a feasible strategy.

9.1.6. Daisyworld

The NetLogo Daisyworld model [Novak & Wilensky, 2006] (see Figure 9.5 is based on the

model proposed by Watson and Lovelock [1983]. This model illustrates the Gaia hypothesis,

and how Earth can be considered a single, self-regulating system including both living and

non-living parts. Several years ago when examining this model, a colleague5 and I discovered

that there was a bug in its code, resulting in aberrant behavior for certain model parameter

settings. As an example of an authentic ABM bug “in the wild”, this model provided a

natural opportunity to test the effectiveness of genetic algorithms for search-based anomaly

detection, as a form of model checking or error testing. That is, could a GA-based search have

picked up the same discontinuity in model behavior that we (humans) had discovered using

5Daniel Kornhauser



282

Figure 9.5. The NetLogo Daisyworld model user interface.

an interactive visual tool for plotting slices of the parameter space? Admittedly, the design

of this task is a posteriori, since we already knew that a bug existed and the exploration

measure was constructed such that it would be possible to find (although not trivial to locate,

since the bug only manifested itself for a very narrow range of parameter settings).

For our exploration of the Daisyworld model6, the anomaly we are trying to detect

is a discontinuity in model behavior given a small change in an input parameter. Our

exploration task is actually quite similar to the phase transition detection task employed

for the Fire model. This overlap is fortunate, because it is plausible that model analysts

looking for critical points and thresholds may at the same time uncover certain classes of

model bugs/errors. In both situations, we are interested in maximizing the absolute change

in some output measure (in this case we will use the total daisy population, although the

discontinuity would be observable with many other output measures) given a small change in

6For this benchmark task we use the NetLogo 4.0.3 version of Daisyworld, as this is the version where the
bug was discovered. Again, for search efficiency we reduced the world size to roughly 50% of that in the
official Daisyworld model.
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some parameter (in this case, the albedo-of-whites parameter). Specifically, we initialize the

model (SETUP), run the model (GO), and measure the average (mean) number of daisies

between 400 and 500 ticks. We do this for multiple repeated model runs and again take

the average. We then calculate the discrete derivative of this value with respect to albedo-

of-whites – that is, the change in the average number of daisies divided by the change in

albedo-of-whites, where ∆albedo-of-whites is fixed at 0.01. The task is then to maximize the

absolute value of this approximated derivative – thus finding those parameter settings where

a small change in albedo-of-whites results in a large change in model behavior.

The parameter space to be searched includes 6 parameters: albedo-of-surface, albedo-of-

whites, and albedo-of-blacks all range from 0 to 1 by increments of 0.01, start-pct-blacks and

start-pct-whites range from 0 to 50, and solar-luminosity is allowed to range continuously7.

The use of a continuous parameter makes it impossible to quantify this size of this search

space in a way that is directly comparable to previous size calculations – however, the search

space size when excluding that parameter is still over 26 million combinations.

9.1.7. Ethnocentrism

The NetLogo Ethnocentrism model [Wilensky & Rand, 2003] (previously pictured in Figure

1.1) is a classic model originally developed by Axelrod and Hammond [2003], demonstrating

a possible mechanism by which ethnocentric behavior could arise as a result of locally played

iterated prisoner dilemma games in an evolving population. This model is a good choice in

part because its behavior has been carefully analyzed, and because particular effort went into

7Technically this “continuous” range is discretized by the precision of the computer’s representation of
floating point numbers, but this resolution provides an indistinguishable approximation of the continuous
range, for our purposes here.
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making sure that this NetLogo model was an accurate replication of Axelrod and Hammond’s

original model [Wilensky & Rand, 2007].

The main result from the Ethnocentrism model was that for a wide variety of parameter

settings, “ethnocentric” behavior naturally evolves and dominates the alternative “altruist”,

“egoist”, and “cosmopolitan” strategies in the population. A little experimentation reveals

that egoist behavior can also be easily achieved in the model by changing the payoff structure

so that the cost of giving is greater than the benefit of receiving; however, it is not clear

what parameter settings (if any) might induce largely altruistic populations. Thus, for our

exploration of this model8, we will seek model parameters that are most favorable to altru-

ists. This particular extreme scenario discovery task is closely related to model sensitivity

analysis. Since the major result of the model is the dominance of ethnocentric behavior,

finding parameters where an alternative strategy is surprisingly dominant (or at least highly

effective) may provide insight about model robustness.

For this task, we fix two model parameters, immigrant-chance-cooperate-with-same and

immigrant-chance-cooperate-with-different, at 0.5, to ensure there is no particular bias of new

agents toward one of the four strategies.9 We allow 6 model parameters to vary: immigrants-

per-day ranges from 0 to 10, mutation-rate ranges from 0 to 1 in increments of 0.001, and the

cost-of-giving, gain-of-receiving, death-rate, and initial-ptr all range from 0 to 1 in increments of

0.01. Our specific measure is the average (mean) fraction of the population that is altruistic

between 200 and 300 model ticks.

8Again, for efficiency we used a version of the model with world-size reduced by roughly 50%.
9If we allowed these to vary, then the GA search would give us the unsurprising (and relatively uninteresting)
result that “if you only allow new (immigrant) agents to be altruists, and you have a high immigration rate
and low mutation rate, then the population will be highly altruistic!”
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Figure 9.6. The NetLogo Heatbugs model user interface.

9.1.8. Heatbugs

The NetLogo Heatbugs model [Wilensky, 2004] has become a classic ABM of abstract emer-

gent behavior, having been implemented in most major ABM toolkits since Swarm [Minar

et al., 1996]. Individual bugs locally add heat to the environment, but also have tempera-

ture thresholds in order to be happy, and they will move if they are either too cold or too

warm. However, each bugs movement and heat dispersal, as well as the global heat-diffusion

rate, affects the other bugs in the environment. Running the model with typical parameter

settings tends to result in a large number of small scattered bug clusters.

For this task, we are interested in discovering whether the Heabugs model10 can ex-

hibit extreme spatial clustering/congregating of agents. Specifically, we initialize the model

(SETUP), run it (GO) for 1000 model ticks, and then calculate the average distance from

10Again, we used a reduced-world-size version of the model. We also transformed the original model’s max-
ideal-temp and max-output-heat parameters into ideal-temp-range and output-heat-range parameters. This
transformation does not affect model behavior, and it avoids the problem of randomly-generated parameter
settings having a larger min-ideal-temp than max-ideal-temp.
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each bug to all other bugs. We then seek to minimize this measure – thus, the highest

fitness behavior would be if every single bug was identically co-located. We hold the num-

ber of agents constant (bug-count = 25), while allowing 7 other model parameters to vary:

evaporation-rate and diffusion-rate each range from 0 to 1 in increments of 0.01, min-ideal-temp

ranges from 0 to 200 (integers), and ideal-temp-range, min-output-heat, output-heat-range, and

random-move-chance all range from 0 to 100 (integers).

9.1.9. Wolf Sheep Predation

The NetLogo Wolf Sheep Predation model [Wilensky, 1997e] (introduced previously in Chap-

ter 3 – see Figure 3.2) is a fairly simple simulation of predator-prey interaction in a closed

ecosystem. This model demonstrates the oscillating dynamics that can result from food

chain relationships. We will use this model for a calibration task, to determine how well

it can exhibit a specific reference pattern. For a reference pattern, I chose the historical

predator-prey dynamics of wolves and moose on Isle Royale in Michigan, U.S.A. [Vucetich &

Peterson, 2009; Peterson, Page, & Dodge, 1984]. Isle Royale has been the site of an intense

ongoing research effort since 1958, tracking the habits, numbers, and patterns of wolves and

moose that live in this (essentially) closed ecosystem. As a result, over 50 years of popula-

tion (abundance) data is publicly available on the Wolves and Moose of Isle Royale project

website [Vucetich et al., 2011]. Figure 9.7 shows a plot of this data.

Admittedly, the Wolf Sheep Predation model is an abstract model of predator-prey dy-

namics and was not specifically designed for modeling the Isle Royale scenario, these two

species, or a host of factors (such as disease) which affected the population dynamics of the

real world data. Even so, I believe it is interesting to compare how well the patterns produced

by this abstract model can match up with reality. Furthermore, even if you do not accept
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Figure 9.7. Wolf and moose abundances recorded on Isle Royale (Lake Supe-
rior) in Michigan, U.S.A. Source: The Wolves and Moose of Isle Royale project
[Vucetich et al., 2011].

that comparison with this specific data is relevant, this type of calibration task is certainly

important for ABM analysis, and can thus serve as a useful benchmark for performance

(which is what we are using it for here).

One issue for this calibration task is that the model does not have any concrete time scale

associated with it, whereas the reference pattern data is indexed by year. Since it is not

at all clear how many model ticks should be equivalent to one real year, we introduced an

additional model parameter named ticks-per-year. In doing so, we allow the search process

itself to determine an appropriate time scale conversion that provides the best match with

the data.
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To measure degree of calibration, we measure Pearson’s product-moment correlation

coefficient between the simulated wolf population history (measured every TICKS-PER-

YEAR ticks) and the real wolf population history, and also between the simulated sheep

population and the real moose population. These two correlation coefficients (which may

range between -1 and 1) are summed together, and we seek to maximize this value – thus

perfect correlation with both data sets would yield a calibration score of 2. Note that the

use of correlation coefficient provides more flexibility to the match, as opposed to requiring

the model to match the exact numbers of wolves and moose. (This flexibility can also be

interpreted as letting one wolf in the model stand for X real wolves, and one sheep in the

model stand for Y real moose.) After all, we are more interested in the qualitative pattern

than in facsimile reproduction of the history.

There was another technical issue with the Wolf Sheep predation model, which is that

under certain parameter settings this model can produce exponential sheep growth that can

quickly consume all of the computer’s RAM and possibly cause the process to hang. Since

these explosive patterns are never going to be a good match with the real data anyway,

we chose to stop the simulation and return a bad fitness score (−2) whenever the sheep

population crossed a threshold of 10,000. While these technical details may seem minor,

they are the typical sort of little issues that must be resolved to successfully perform search-

based ABM exploration and analysis.

For this task we varied all 9 of the model parameters (excepting parameters like show-

energy, which only affect visualization of the model). The boolean parameter grass? was

allowed to be either TRUE or FALSE. All other parameters were integers: the initial popu-

lations (initial-number-sheep and initial-number-wolves) ranged from 1 to 250, grass-regrowth-

time and wolf-gain-from-food both ranged from 0 to 100, sheep-gain-from-food ranged from
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0 to 50, and wolf-reproduce ranged from 0 to 20, sheep-reproduce ranged from 1 to 20, and

ticks-per-year ranged from 1 to 20. The total size of this search space is around 5.4 × 1012

parameter combinations.

9.2. Experimental Setup

9.2.1. Search Method Variations

For each of the tasks above, five different search algorithms were applied: two genetic algo-

rithm variants, and three other metaheuristic search algorithms for comparison. These are

described

Random Search (RS). Random Search (RS) simply chooses a point in the search space

uniformly at random and evaluates its fitness, and determines whether it is better than any

previously examined point. At the end of the search, the best examined point is returned.

Random-Mutation Hill Climber (HC). The Random-Mutation Hill Climber (HC) starts

at a random point in the search space, consider it’s current location in the space. It gen-

erates a neighboring location by applying the mutation operator (mutation-rate = 0.05) to

the current location. It examines the fitness of the neighboring location, and if the fitness is

superior, that neighboring location becomes the current location, and the process repeats. In

addition, the HC has a mechanism to restart if it is “stalled”. Specifically, if the HC makes

1000 attempts to move to a neighboring point without succeeding, the current location of

the HC will jump to a new random location in the search space, and continue “climbing”

from there. At the end of the search, the best examined point is returned.

Simulated Annealing (SA). Simulated Annealing (SA) [Kirkpatrick, Gelatt, & Vecchi,

1983; Černỳ, 1985] is a nature-inspired metaheuristic search algorithm based on physics

(rather than biology, like genetic algorithms). The analogy here is to the metallurgical
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annealing process, wherein a material is first heated, and then cooled in a controlled process

in order to form larger purer crystals. Higher temperatures permit more random motion

of the atoms through various (higher energy) states, and the slow cooling improves the

likelihood that the material will converge into a lower energy configuration. In SA, this

corresponds to initially allowing the search process to wander through poor fitness regions,

but over time decrease the probability of moving to poor fitness regions so that it will

eventually settle into a very good fitness region. Like the GA, the probabilistic nature of the

SA sometimes allows it to avoid becoming trapped in local optima of the fitness landscape.

The SA algorithm itself is strikingly similar to the HC algorithm presented above. The

SA starts at a current location, and it moves to (randomly generated) neighboring location

if that location is superior, or possibly even if that location is inferior (with some acceptance

probability based on how much worse the new location is and on the global “temperature” T ).

The probability of accepting an inferior position decreases over time as the global tempera-

ture T is cooled according to an “annealing schedule”. Specifically, for these experiments the

acceptance probability for SA was e(∆fitness)/T , and we used a fairly standard exponential

decay annealing schedule for decreasing temperature (specifically, T = 0.99t, where t is the

number of “moves” the SA has completed). In an ideal world, we would be able to vary the

search parameters (such as the cooling schedule and mutation rate) to find optimal settings

for the benchmark set, or for each model individually, but pragmatic constraints on time

and effort are preventative. However, this lack of parameter tuning is in a sense “fair” across

the search methods being compared - in all cases (including the GAs) search parameters

were configured (a priori) to what seemed reasonable defaults, either based on standard best

practices, previous literature, or intuition. A more detailed future investigation of this area
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is desirable, but the current experimental design already required significant computational

effort (see Section 9.2.4 below).

Generational Genetic Algorithm (GA-Gen). The generational genetic algorithm (GA-

Gen) is based loosely on the simple genetic algorithm as originally proposed by Holland

[J. Holland, 1975], though adapted for the more flexible chromosomal representation de-

scribed in Section 9.2.2 below. The general idea of the generational GA (starting with a

random population of individuals which evolves better solutions, generation by generation,

as a result of the combined forces of variation and selection) has already been described in

3.4.1. All that remains is to fill in the specific details used in the GA-Gen implementation

for this set of experiments.

Matching the HC and SA algorithms, the mutation-rate was set at 0.05. This 5% mutation

rate may seem high compared to the mutation rates commonly employed with binary genetic

algorithms (more commonly 1%, or inversely proportional to twice the length of the bit

string). However, those smaller values were per bit mutation rates, whereas the 0.05%

mutation rate described here is applied per-parameter, and there are only between 1 and

9 parameters being varied for these tasks, and numeric parameters are manipulated by

Gaussian mutation, which is more likely to cause a small change in value rather than a large

one. Thus, the amount of novelty introduced by a 5% mutation rate using this representation

may be comparable to lower mutation rates using a strictly binary genotype representation.

The GA’s crossover-rate was set to 0.70 (which is a common/standard choice).

GA-Gen uses tournament selection (with tournament size 2) to select individuals to

become parents for reproduction. In contrast to the original roulette selection which selects

individuals proportionally according to their numeric fitness values, tournament selection

examines two individuals from the population random and selects the more fit of the two.
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Thus, only relative fitness comparisons matter and absolute fitness values are unimportant;

this can save human effort that would be required to tailor and properly scale the fitness

function for use with roulette selection on a given problem.

Steady State Genetic Algorithm (GA-SS). It has been argued that a more incremental

population replacement strategy (as opposed to generational replacement) is beneficial for

genetic algorithms to converge more quickly on optimal solutions [Whitley & Kauth, 1988;

Whitley, 1989]. To test this claim in the context of ABM exploration, we also tried a GA

using a “steady state” population replacement strategy. Our steady state genetic algorithm

(GA-SS) is identical to the generational GA described in most respects. However, unlike the

generational GA, the steady state only replaces a single individual in the population at a

time. That is, it generates one new offspring (using the same parent selection, crossover, and

mutation mechanisms), and then replaces one individual in the population (not necessarily

the parent) with this new offspring. For these experiments, we always replace a member of

the existing population chosen uniformly at random. (An alternative variant of the steady-

state GA involves always replacing the individual with the worst fitness, which we did not

investigate here, but is also supported by the BehaviorSearch tool.)

Intuitively, this incremental replacement can speed up the maximal rate of evolution,

since a new good individual that enters the population may be consequently chosen to be a

parent more quickly than in the generational model, which requires that the whole population

is replaced in a batch operation. However, a counter argument can be made that using a

steady-state GA might result in premature population convergence and decreased genetic

diversity – thus the benefit in practice is not necessarily clear.
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9.2.2. Chromosomal representation

While some of the experiments in the case studies presented in earlier chapters used Gray bi-

nary encoding for the model parameters, all searches in the experiments presented here used

the “MixedType” chromosomal representation. This representation has the most straightfor-

ward mapping between genotype and phenotype – that is, each gene represents one parame-

ter (which may be integer-valued, real-valued, boolean, or categorical). Mutation is applied

(with a certain probability) to each gene individually, where Gaussian mutation is used for

numeric values, bit-flipping is used for boolean values, and random choice is for categorical

values. For the genetic algorithms, crossover only splits the chromosome in between genes

(no special real-valued crossover mechanisms are employed to do crossover on the intra-gene

level). (A comparative study of the relative efficacy of different chromosomal representations

is an important area for future work, but is beyond the scope of the current study, which is

already investigating the effects of changing multiple variables.)

9.2.3. Caching and Noisy Sampling Variations

For each of the five search algorithms described in Section 9.2.1 above, we tested 5 different

levels of sampling to reduce uncertainty in the fitness evaluations, and we tested all of these

combinations with and without fitness caching. This work dovetails on the more theoretical

work about sampling noisy fitness landscapes presented in Chapter 8. Here we are seeking

the empirical answer to the questions:

(1) when is fitness caching beneficial in the presence of noise?

(2) what level of sampling is most effective for efficient exploration of the fitness land-

scape?
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9.2.4. A note on computational effort

In total, the benchmark experiments for the models presented below cumulatively required

running roughly 300 million (3.0× 108) agent-based simulations and took more than 37000

CPU-hours11 It is only with the advent of high performance cluster computing that these

type of experiments have really become feasible. However, note that practitioners of this

exploratory approach need not necessarily expend this much computational effort in their

own ABM analysis work. For the purpose of benchmarking, 30 repeated searches with each

search configuration were required, in order to have reasonable statistical confidence for com-

paring the performance of different search configurations. Furthermore, 50 different search

configurations (caching vs. not, different noise sampling, 5 different search algorithms) were

tested for each model. While it may be advisable for practitioners to try a few repeated

searches (to reduce the danger of anomalous results) and use more than one search config-

uration (in case a specific search method yields particularly poor results for the problem),

they should not require anywhere near 1500 searches per exploratory task in order to dis-

cover interesting parameters or answer relevant analysis questions. Furthermore, much of

the power of the query-based exploration framework, is that once you have found a certain

behavior, you have proof of the existence of that behavior in the model’s parameter space.

You may not know for certain that the behavior can’t be achieved (or achieved more fully)

using different parameters, but you do know that it is at least possible. Thus, even running

just a single search (which can generally be run on any modern single/dual/quad-core lap-

top or desktop computer) has the potential to provide significant insight into your model’s

11This equates to a little over 4 CPU-years, meaning that if a single processor had been responsible for this
task, it would have spent nearly as long on this thesis as I have. Of course this effort was instead spread
across hundreds of processors for a much briefer amount of time. (If only I could have similarly parallelized
the human aspect of this thesis!)
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analysis, if the result is positive. On the other hand, if the search result is negative, then

many more searches would need to be attempted before deciding that the desired behavior

(probably) cannot be elicited from the model.

However, it is the coming ubiquity of massively multi-core machines combined with the

increasing prevalence of parallel computing clusters as well as elastic on-demand cloud com-

puting that holds the most promise for the QBME methodology to gain popularity and

become mainstream in the future. Currently these technologies are a few steps removed

from the scientific practice, but eventually tools will arise to integrate with (and tap into)

incredible computational resources. In the not-so-distant future I envision in a “begin par-

allel search” button appearing in toolkits like NetLogo that would seamlessly launch dozens

or hundreds of simultaneous genetic algorithms searches on a remote grid/cluster, reporting

back the most promising results to the user as they are discovered in real-time.

9.2.5. A note on measuring search performance

There are a number of ways to measure the performance of a search algorithm so we will

clarify our method here. Each search algorithm (GA, HC, RS, etc) evaluates fitness of

individual points in the search space as it progresses. As it runs, it keeps track of the best

individual (and associated best fitness) discovered so far, and if it finds a new individual

that’s better than the previous best, it records that as the “best” instead. This history of

best fitness values found, along with the number of evaluations (simulation model runs) that

were required before the fitness was found, forms a natural way to chart the progress of the

search.

However, because fitness evaluation is noisy, the fitness values reported by the search

process are biased towards better fitness than the points actually represent. Consider, for
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instance, a population of 100 individuals that each have a true average fitness of 10, but

that noisy fitness evaluations causes them each to report 10 + R, where R is a normally

distributed random number with mean 0 and standard-deviation of 1. It’s more likely than

not that the Genetic Algorithm will evaluate one of the individuals and find a fitness greater

than 12, even though the true fitness is only 10. For this reason, we employ a method

we call best-checking12, which is extrinsic to the search algorithm, but very useful for accu-

rately assessing search performance. With best-checking, we take each new supposed “best”

individual reported by the search method, and re-evaluates the fitness for that individual

using an additional B model runs. This provides an unbiased estimate of the fitness of each

individual that the search process views as better than all previous. As we discussed in

Chapter 8, it is quite possible that the search process will choose a new individual which is

not better than the previous best, although it may appear so due to noise. The best-checking

procedure has the additional benefit that we may choose the number of unbiased sampling

runs (B) to be much larger than the regular amount of sampling for evaluating fitness, since

best-checking is only invoked each time the search algorithm finds a new “best” – which

occurs relatively infrequently, especially in the latter portion of the search process. For all

of the experiments presented here, we use B = 100 additional model runs to obtain an un-

biased estimate of the true fitness of each alleged “best” individual. Thus, the performance

versus number of model runs plots presented in this chapter are showing the average (across

30 searches) of the “checked” fitness values of the best individuals found by the time the

search has performed x model runs. (For all of these tasks we are measuring the “offline”

performance of the algorithm; measuring “online” performance does not make sense in this

context [K. A. De Jong, 1975].)

12This functionality is included in the BehaviorSearch software.
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9.3. Benchmark Results

The results are organized as follows. We will first provide a birds-eye-view of search

performance across all benchmark tasks, then we will delve deeper into the details of search

performance by examining the search dynamics for selected illustrative cases. Next we will

address the efficacy of fitness caching in the noisy environments created by ABM exploration

tasks, followed by a discussion of the impact of varying levels of noise reduction through

repeated sampling.

9.3.1. Performance summary

Choosing the criteria on which to measure search performance is not a simple matter. In

some cases researchers have used the “time taken to find the optimal solution”. However, this

criteria only makes sense if the optimal solution is known ahead of time, and if the search

task demands that the optimal solution be found. For the situation of ABM parameter

exploration, we can only find the optimal solution through exhaustive enumeration in very

small search spaces, and in general, we are interested in achieving good performance on the

search task, rather than demanding perfection. Thus, we are interested in how quickly the

search algorithm can achieve good performance (where “good” is relative to the performance

achieved by other search algorithms). This leaves us with two variables: search time (mea-

sured by the number of simulations the search has run) and search performance (measured

by the fitness of the best parameters the search has discovered so far). When evaluating

performance on a single problem, we can look at the full plot of search performance over

time. This can tell us, for instance, whether a certain algorithm does better early on, but is

eventually surpassed by a different algorithm (if the search is allowed to run long enough).
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However, in this benchmark test, we have 10 model exploration tasks, each with 5 different

levels of noise reduction sampling13, and fitness caching turned on or off, and evaluating

the performance in this fine-grained fashion would require examining 100 dense performance

plots, each comparing the 5 search methods tested here. We will examine a few such plots in

the detailed discussion of each model task in sections 9.3.2.1 to 9.3.2.8 below, but this is in-

effective as a comprehensive overview. Thus, it is necessary to condense search performance

information, so that it can be summarized and more easily digested. One common approach

is to measure the search performance of each method at the end of the searches. This is

a logical performance measure since it reflects the best search results found by each search

algorithm, given the amount of time that it was allowed to run. This is the first measure we

use to quantify search algorithm performance. However, the search time cutoff (20K model

runs) was chosen somewhat arbitrarily – if a smaller limit had been set, a different search

algorithm might have been superior at that earlier point. This is particularly relevant for

problems where all the search methods reach a similar performance plateau, but some arrive

there more quickly than others (e.g., for a dramatic case in point, see the Segregation task

results discussed below in Section 9.3.2.2). In order to reward search algorithms for both

the quality of the solutions and the speed in arriving at them, we also looked at a measure

that averages the search performance across time. This is equivalent to the assumption that

a search practitioner might have chosen to stop the search (with equal probability) at any

point prior to our search cut-off of 20K model runs. This second measure is proportional to

the area under the curves in the average search performance versus time plots. Any form of

condensing/averaging data has its caveats, since some information is being lost. However,

13Except for the FireVariance task, which used only 4 levels of sampling, since a sample size of 1 does not
permit the calculation of variance!
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these two measures provide reasonable proxies for search algorithms’ performance that is

useful for the type of ABM exploration tasks we are interested in.

The condensed benchmark results using the first measure (performance at the end of

the search) are shown in Table 9.2 (with fitness caching turned on) and Table 9.3 (without

fitness caching). Similarly, the condensed benchmark using the second measure (average

performance across search time) are shown in Tables 9.4 and 9.5. Even after this condensing

of temporal search information (and averaging performance across 30 repeated searches),

global trends in the benchmark performance can be somewhat difficult to detect. Since

the best performance in each row is shown in bold, scanning down the tables, one may

perceive that GA-Gen (the generational genetic algorithm) fairly often achieved the best

performance of the five methods, and the larger number of bold entries lower in the table

show that this was more true in the exploration tasks that had larger, more complicated,

and higher dimensional search spaces.

However, to appropriately summarize the benchmark results, another level of information

condensing is required. Because the performance/fitness values are incomparable across

different modeling tasks, we cannot simply average performance values – instead we use a

rank-order approach to aggregate data across tasks. Each row in these tables corresponds

to a specific task and an associated noise level sampling. For each row, we rank the five

search algorithms 1, 2, 3, 4, and 5, with 1 corresponding to the search algorithm that did

the best under those conditions, and 5 corresponding to the search algorithm that did the

worst. Then, for each search method, we can take the average of it’s rank value over all the

rows: e.g., a search algorithm that achieved rank 2 in half of the cases and rank 3 in the

other half would get an average rank of 2.5. These average rank results are given in Table

9.6. Using either performance measure, with and without fitness caching, GA-Gen yielded
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Model/Task Sampling RS HC SA GA-Gen GA-SS

FireDeriv 1 9.29 10.25 10.04 10.53 9.65

FireDeriv 4 13.41 12.86 13.92 13.17 13.59

FireDeriv 9 12.06 12.61 13.84 12.49 12.80

FireDeriv 16 13.53 11.80 13.80 14.37 12.68

FireDeriv 25 13.46 11.11 12.54 12.77 12.99

FireVariance 4 15.40 13.70 13.86 14.86 14.63

FireVariance 9 18.35 17.41 17.47 17.79 18.21

FireVariance 16 20.04 19.22 19.21 19.64 19.14

FireVariance 25 19.84 18.33 19.65 20.28 19.97

Segregation 1 99.00 99.59 99.68 99.52 99.28

Segregation 4 99.67 99.90 99.92 99.85 99.95

Segregation 9 99.92 99.90 99.94 99.94 99.97

Segregation 16 99.96 99.97 99.97 99.97 99.94

Segregation 25 99.96 99.97 99.97 99.94 99.93

Ants 1 22.55 20.77 22.12 22.72 21.89

Ants 4 24.38 24.61 25.10 24.73 24.35

Ants 9 25.18 25.52 24.32 25.85 25.37

Ants 16 25.74 22.70 25.91 25.97 25.41

Ants 25 25.69 23.00 21.53 26.12 26.07

Fireflies 1 0.733 0.724 0.721 0.734 0.714

Fireflies 4 0.768 0.775 0.763 0.761 0.735

Fireflies 9 0.779 0.783 0.785 0.779 0.764

Fireflies 16 0.782 0.783 0.789 0.758 0.771

Fireflies 25 0.791 0.788 0.781 0.787 0.766

Flocking 1 13.65 16.21 18.19 18.94 18.84

Flocking 4 17.92 17.97 19.45 19.65 19.66

Flocking 9 19.90 18.58 19.80 19.89 19.92

Flocking 16 19.75 19.33 20.01 19.84 19.97

Flocking 25 19.67 19.51 19.82 19.98 19.94

Daisyworld 1 5747 7304 13490 11852 10436

Daisyworld 4 19766 15521 16971 18679 15848

Daisyworld 9 21341 16801 16243 20311 18203

Daisyworld 16 20108 11889 14486 20304 18471

Daisyworld 25 20270 7918 11815 19945 17052

Ethnocentrism 1 0.335 0.337 0.321 0.407 0.384

Ethnocentrism 4 0.388 0.382 0.400 0.416 0.413

Ethnocentrism 9 0.390 0.402 0.416 0.418 0.415

Ethnocentrism 16 0.387 0.377 0.421 0.417 0.418

Ethnocentrism 25 0.386 0.398 0.407 0.417 0.414

Heatbugs 1 9.87 10.06 7.09 9.94 10.32

Heatbugs 4 9.41 10.29 7.97 8.09 9.74

Heatbugs 9 9.32 10.73 8.89 7.89 9.06

Heatbugs 16 10.06 11.47 9.86 8.59 9.18

Heatbugs 25 10.30 11.79 8.94 8.52 9.35

WolfSheep 1 0.890 0.934 1.14 0.977 0.807

WolfSheep 4 0.890 0.922 1.05 1.09 0.878

WolfSheep 9 0.835 0.816 1.04 0.974 0.970

WolfSheep 16 0.883 0.727 0.861 0.986 0.843

WolfSheep 25 0.871 0.698 0.773 0.942 0.840

Table 9.2. Benchmark search performance (at end of search – 20K model runs)
with fitness caching turned on. For each task and noise sampling level (row),
the best performance is shown in bold. Each data point is the average of 30
searches.
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Model/Task Sampling RS HC SA GA-Gen GA-SS

FireDeriv 1 8.04 9.02 7.77 11.55 13.61

FireDeriv 4 12.61 12.76 13.48 12.79 13.10

FireDeriv 9 12.61 13.29 13.84 13.50 13.44

FireDeriv 16 13.77 9.14 13.09 11.87 12.66

FireDeriv 25 12.75 9.21 13.66 12.69 13.10

FireVariance 4 15.09 14.66 16.31 16.83 19.00

FireVariance 9 18.59 16.74 19.07 19.65 19.57

FireVariance 16 20.25 17.40 19.13 20.32 19.68

FireVariance 25 20.12 16.77 19.85 20.04 19.41

Segregation 1 99.60 99.42 99.00 99.51 99.30

Segregation 4 99.73 99.83 99.93 99.88 99.87

Segregation 9 99.77 99.93 99.88 99.92 99.95

Segregation 16 99.93 99.94 99.97 99.96 99.95

Segregation 25 99.96 99.97 99.91 99.95 99.95

Ants 1 22.23 22.38 22.48 24.86 25.27

Ants 4 25.00 24.20 24.45 25.31 25.32

Ants 9 25.50 23.95 23.94 25.97 25.71

Ants 16 25.60 22.62 24.97 25.79 25.80

Ants 25 25.97 18.69 22.76 25.90 25.78

Fireflies 1 0.715 0.742 0.728 0.737 0.737

Fireflies 4 0.765 0.755 0.782 0.772 0.769

Fireflies 9 0.791 0.758 0.783 0.785 0.752

Fireflies 16 0.787 0.757 0.774 0.789 0.764

Fireflies 25 0.788 0.718 0.778 0.770 0.762

Flocking 1 13.31 15.81 16.97 19.17 19.00

Flocking 4 18.80 18.76 19.73 19.33 19.84

Flocking 9 19.75 19.86 19.75 19.82 19.76

Flocking 16 19.81 19.95 19.92 19.95 19.77

Flocking 25 19.79 18.78 19.32 19.96 19.91

Daisyworld 1 7894 8662 11020 12404 12612

Daisyworld 4 20490 13849 16585 18090 15149

Daisyworld 9 21329 14959 13537 17967 18311

Daisyworld 16 20705 12938 8150 17788 17727

Daisyworld 25 19914 11725 9069 18330 15957

Ethnocentrism 1 0.318 0.347 0.343 0.424 0.421

Ethnocentrism 4 0.395 0.377 0.397 0.424 0.420

Ethnocentrism 9 0.384 0.393 0.419 0.415 0.410

Ethnocentrism 16 0.390 0.371 0.421 0.415 0.392

Ethnocentrism 25 0.384 0.363 0.412 0.403 0.386

Heatbugs 1 10.35 10.49 7.11 5.34 6.05

Heatbugs 4 9.23 11.04 8.16 6.27 8.38

Heatbugs 9 9.25 11.77 9.27 7.43 9.18

Heatbugs 16 10.06 11.88 10.21 7.91 9.05

Heatbugs 25 9.72 12.60 9.18 9.75 10.28

WolfSheep 1 0.920 0.996 1.07 0.947 0.803

WolfSheep 4 0.898 0.845 1.04 0.973 0.877

WolfSheep 9 0.898 0.675 0.897 1.02 0.882

WolfSheep 16 0.913 0.614 0.840 0.964 0.791

WolfSheep 25 0.838 0.590 0.770 0.888 0.744

Table 9.3. Benchmark search performance (at end of search – 20K model runs)
with fitness caching turned off. For each task and noise sampling level (row),
the best performance is shown in bold. Each data point is the average of 30
searches.
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Model/Task Sampling RS HC SA GA-Gen GA-SS

FireDeriv 1 10.39 10.51 10.18 10.72 9.96

FireDeriv 4 13.12 11.97 13.74 12.61 13.36

FireDeriv 9 11.65 11.84 13.60 12.48 12.50

FireDeriv 16 12.61 10.03 13.06 13.11 12.24

FireDeriv 25 12.17 10.77 11.71 12.16 12.32

FireVariance 4 15.90 14.01 14.54 15.03 15.27

FireVariance 9 18.49 16.92 18.32 18.03 18.04

FireVariance 16 19.36 17.45 19.61 18.78 19.09

FireVariance 25 18.95 15.78 19.52 19.82 19.37

Segregation 1 99.00 99.58 99.68 99.52 99.28

Segregation 4 99.66 99.86 99.88 99.84 99.95

Segregation 9 99.90 99.78 99.87 99.90 99.94

Segregation 16 99.91 99.79 99.72 99.91 99.88

Segregation 25 99.88 99.78 99.62 99.87 99.84

Ants 1 22.44 21.07 22.32 23.35 22.13

Ants 4 24.47 23.28 23.98 24.71 24.48

Ants 9 25.33 22.85 22.10 25.59 25.34

Ants 16 25.71 20.87 24.38 25.78 25.40

Ants 25 25.66 20.50 20.64 25.93 25.63

Fireflies 1 0.732 0.723 0.720 0.734 0.714

Fireflies 4 0.765 0.770 0.760 0.760 0.733

Fireflies 9 0.775 0.778 0.771 0.775 0.760

Fireflies 16 0.770 0.773 0.757 0.752 0.767

Fireflies 25 0.770 0.772 0.744 0.774 0.760

Flocking 1 13.15 15.98 18.45 18.92 18.77

Flocking 4 18.72 18.11 19.38 19.53 19.48

Flocking 9 19.34 18.38 19.14 19.60 19.64

Flocking 16 19.15 18.15 18.57 19.38 19.46

Flocking 25 18.74 17.89 18.42 19.13 19.15

Daisyworld 1 5974 7212 12066 11541 9188

Daisyworld 4 19212 11817 13857 17964 15747

Daisyworld 9 17566 13071 12520 18397 16233

Daisyworld 16 16323 9035 9980 17268 15770

Daisyworld 25 14076 6362 9036 15816 14218

Ethnocentrism 1 0.336 0.342 0.339 0.403 0.382

Ethnocentrism 4 0.382 0.371 0.385 0.409 0.406

Ethnocentrism 9 0.378 0.365 0.387 0.404 0.401

Ethnocentrism 16 0.373 0.332 0.365 0.395 0.399

Ethnocentrism 25 0.371 0.353 0.330 0.384 0.383

Heatbugs 1 10.18 10.96 8.98 10.10 10.53

Heatbugs 4 10.15 11.76 9.70 8.71 9.96

Heatbugs 9 10.06 12.43 10.67 8.93 9.86

Heatbugs 16 10.60 12.85 11.56 9.91 10.26

Heatbugs 25 10.88 12.88 10.94 10.07 10.36

WolfSheep 1 0.745 0.715 0.968 0.901 0.765

WolfSheep 4 0.754 0.711 0.814 1.00 0.779

WolfSheep 9 0.749 0.617 0.760 0.875 0.859

WolfSheep 16 0.734 0.567 0.653 0.850 0.762

WolfSheep 25 0.737 0.495 0.556 0.787 0.739

Table 9.4. Benchmark search performance (averaged across time) with fitness
caching turned on. For each task and noise sampling level (row), the best
performance is shown in bold. Each data point is the average of 30 searches.
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Model/Task Sampling RS HC SA GA-Gen GA-SS

FireDeriv 1 9.44 8.60 8.57 11.57 12.54

FireDeriv 4 12.42 12.19 12.76 12.30 12.72

FireDeriv 9 12.33 9.28 13.26 12.52 12.27

FireDeriv 16 12.67 9.19 12.35 11.39 11.54

FireDeriv 25 11.93 9.22 12.46 11.97 11.38

FireVariance 4 16.07 15.24 15.98 17.00 18.13

FireVariance 9 18.44 17.58 18.28 18.96 18.98

FireVariance 16 19.44 15.12 18.49 19.30 19.20

FireVariance 25 19.74 16.61 19.29 19.50 18.55

Segregation 1 99.60 99.41 99.00 99.51 99.31

Segregation 4 99.72 99.75 99.85 99.87 99.86

Segregation 9 99.85 99.81 99.75 99.86 99.91

Segregation 16 99.88 99.61 99.72 99.88 99.88

Segregation 25 99.87 99.71 99.69 99.84 99.88

Ants 1 22.08 22.25 21.81 24.96 25.04

Ants 4 24.97 21.67 23.27 25.12 25.24

Ants 9 25.21 20.53 21.73 25.85 25.57

Ants 16 25.45 20.04 21.45 25.41 25.51

Ants 25 25.77 18.52 21.89 25.57 25.36

Fireflies 1 0.721 0.715 0.741 0.737 0.733

Fireflies 4 0.766 0.732 0.771 0.773 0.760

Fireflies 9 0.777 0.728 0.751 0.772 0.743

Fireflies 16 0.778 0.730 0.756 0.777 0.749

Fireflies 25 0.770 0.709 0.749 0.756 0.754

Flocking 1 13.17 15.88 17.24 19.13 18.96

Flocking 4 19.12 17.92 19.37 19.13 19.59

Flocking 9 19.45 18.24 19.21 19.22 19.40

Flocking 16 19.23 19.17 18.87 19.22 18.86

Flocking 25 19.01 17.50 17.66 18.96 18.91

Daisyworld 1 6688 7239 8448 11870 12136

Daisyworld 4 18689 10367 11151 17162 13922

Daisyworld 9 18421 9495 8384 14738 15511

Daisyworld 16 15672 10910 7390 14586 14317

Daisyworld 25 15495 9717 8046 14398 12642

Ethnocentrism 1 0.333 0.347 0.352 0.416 0.409

Ethnocentrism 4 0.385 0.348 0.386 0.406 0.403

Ethnocentrism 9 0.373 0.352 0.383 0.395 0.388

Ethnocentrism 16 0.376 0.351 0.366 0.385 0.375

Ethnocentrism 25 0.367 0.343 0.339 0.373 0.363

Heatbugs 1 10.74 11.74 9.20 7.66 8.68

Heatbugs 4 9.89 12.48 9.60 8.36 9.59

Heatbugs 9 10.05 12.80 10.61 9.00 10.32

Heatbugs 16 10.75 13.14 11.66 9.96 10.07

Heatbugs 25 10.69 13.03 10.88 10.71 11.00

WolfSheep 1 0.793 0.677 0.904 0.813 0.739

WolfSheep 4 0.777 0.640 0.827 0.865 0.761

WolfSheep 9 0.738 0.426 0.691 0.890 0.785

WolfSheep 16 0.800 0.429 0.658 0.782 0.702

WolfSheep 25 0.750 0.466 0.542 0.727 0.664

Table 9.5. Benchmark search performance (averaged across time) with fitness
caching turned off. For each task and noise sampling level (row), the best
performance is shown in bold. Each data point is the average of 30 searches.
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Model/Task Sampling RS HC SA GA-Gen GA-SS
End-of-search performance Caching 3.2 3.9 2.7 2.0 3.2
End-of-search performance No Caching 3.2 4.2 3.0 2.0 2.7
Avg-over-time performance Caching 3.0 4.3 3.3 1.8 2.6
Avg-over-time performance No Caching 2.4 4.7 3.5 1.9 2.6

Table 9.6. Average performance rank for each of the search methods. The
possible range of rank values is between 5.0 and 1.0, with lower scores being
superior. This table shows average ranks (1-best, 5-worst) for the search al-
gorithms across all exploration tasks and noise levels. The best average rank
values for each case are shown in bold.

the best performance in all cases. This confirms the trends that were mildly apparent in the

long-form benchmark results data (Tables 9.2 through 9.5). However, the GA-Gen average

rank is around 2, indicating that although it often was the best search algorithm (rank 1), for

many cases another search algorithm provided better performance. Again, this summarizes a

trend that is evident the long-form benchmark results. While it would have been nice to find

that one search method consistently dominated all others, the truth (as it often happens) is

more subtle and complicated. In fact, there are a few surprising features of these benchmark

results.

For example, the random search (RS) method generally outperformed the hill climbing

(HC) heuristic. And when looking at the average search performance over time (which also

considers early search performance), RS also has a better average rank than SA and GA-SS.

RS was chosen as a baseline unintelligent uniform sampling procedure - and yet it provides

better performance than more sophisticated search methods in many cases. How can this

be? There are a number of contributing factors. First, many of these tasks have a relatively

small search space, and the chances of randomly sampling a good solution are relatively high.

All of the other search methods (but especially HC and SA) have some notion of moving

incrementally through the search space. Thus, if they start by sampling a poor fitness region
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of the space, it takes some time for them to climb out of it into a better fitness region.

HC (and to some extent SA) specialize in fine-tuning a solution, and this thrust toward

“exploitation” over initial “exploration” can be costly for performance, especially early on

in the search process. Genetic algorithm’s population-based approach is less prone to this

problem, since the initial population contains a decently large random sampling. Second, for

many of these tasks noisy fitness is a significant issue – particularly when the noise sampling

level is small (1, 4, 9). When noise is significant, HC (and other search techniques) may

fail to pick up the appropriate search gradient, and not climb directly uphill. Instead, HC

may wander (aimlessly) in a small region of the space, tossed back and forth by noisy fitness

values. Of course, RS also experience noisy fitness evaluations, and this may mislead it

in its estimation of the value of each set of parameters that it tests, but at least it does

not become stranded in a small region of the space, where fitness may be low. In larger

search spaces (higher dimensional, more ABM parameters, etc), where good fitness values

are more sparse, and where fitness uncertainty does not overpower the search gradient, then

one would expect HC to outperform RS. It is also possible that the 20K model run cut-off

for the search was often too low for HC to excel on the tasks – if HC had been allowed

to run for a much longer time, it may have eventually surpassed random search, after its

fine-tuning capabilities became more beneficial. However, it is important to recall that many

ABM analysis tasks require more exploration, and less exploitation/optimization, and thus

RS may be a useful method, and should not be written off entirely. That said, GA-Gen,

which uses a balance of exploration and exploitation, outperformed RS in most cases.

A second surprising result was the GA-SS generally performed worse than GA-Gen on

these tasks. We explicitly included GA-SS as a search method, since previous work [Whitley

& Kauth, 1988; Whitley, 1989] had suggested that GA-SS might be superior in its ability to
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more quickly converge on good solutions. However, quick convergence can be a drawback as

well as a benefit. It is likely that the GA-SS population prematurely converged to moderately

good fitness values, possibly at local optima (either intrinsic to the fitness landscape or caused

by noisy fitness evaluations), leaving little diversity in the population. After convergence to

a near-identical population, further search progress would be slow, likely similar to the HC.

On the other hand, GA-Gen converges more slowly, allowing the search to explore several

branches in parallel, before one branch becomes dominant and the population converges. We

should keep in mind, though, that these results presented here are not definitive, and it would

be foolish of us to conclude that GA-Gen is superior to GA-SS for ABM exploration tasks.

A more tempered conclusion would be that for these search spaces, which are somewhat

conducive to random search, greater emphasis should be placed on exploration, and slower

convergence may be more beneficial for this task. Furthermore, there are a number of

methods for slowing GA population convergence, including increasing the mutation rate,

increasing the population size, or more explicit diversity maintenance mechanisms. Thus, it

could be that using different conditions than we used here, GA-SS might outperform GA-Gen

on these same benchmark tasks. However, until more in-depth investigations can be carried

out to assess the relative contributions of the differing GA population replacement models,

our benchmark results currently suggest that practitioners should choose a generational

approach.

9.3.2. Individual tasks and search dynamics

9.3.2.1. Fire (FireVariance and FireDeriv). While high dimensional search spaces

are difficult to visualize, for the Fire exploration tasks our search space is 1-dimensional,

so we will take the opportunity to examine it. A “ground truth” map of the search space
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Figure 9.8. Fitness landscape for the FireDeriv task.

was created by using an exhaustive search to run the simulation with each possible density

parameter value 100 times. This data was used to calculate the change in average percent-

burned (per one unit change in density) at each density value (the “true” fitness landscape

for the FireDeriv task, shown in Figure 9.8), and the standard deviation of the percent-

burned at each density (the “true” fitness landscape for the FireVariance task, shown in

Figure 9.9).

Note that despite taking 100 samples to reduce noise/uncertainty, the data is still some-

what noisy. The search algorithms were using smaller sampling values (1,4,9,16,25) than

100, meaning that their view of the search space was even more noisy than that displayed.

In the exhaustive search, the highest fitness value for the FireDeriv landscape was found at
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Figure 9.9. Fitness landscape for the FireVariance task.

density= 60.12.The highest fitness value for the FireVariance landscape was found at den-

sity= 60.01. Although these two density values are not identical, they are very close, and

they both serve to identify the Fire model’s phase transition. Although I have described the

plots shown in Figures 9.8 and 9.9 as “fitness landscapes”, the search space is also shaped

by the search operators that navigate the space. For this task which has only a single pa-

rameter, the genetic recombination operator is essentially inoperative, and the only search

operator that affects which points in the space are accessible from each other is the mutation

operator. As mentioned earlier, these searches all use Gaussian mutation for numeric model

parameters (such as density). Thus, a mutation can occasionally result in a large jump (i.e.

large change in density), but small incremental steps are far more likely.
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Apart from the noise, which may mislead or confound the search algorithms, both of

these search spaces are fairly straightforward. They each have a global optimum that has a

large basin of attraction leading up to it from either side. If you look carefully, you can also

find a very small local optima near density= 0 (more apparent in Figure 9.9) - however its

fitness is low and its basin of attraction is small, so searches are unlikely to be trapped by it.

This local optimum is explained by chance and small numbers – for very low density values

(e.g., 0.01 to 0.05), there may be only a few trees in the world, and if several of these trees

happen to be created adjacent to the left border of the world, where the forest fire starts,

then a large percentage of the forest can burn, simply because the “forest” consisted of only

a few trees – not because the forest fire spread a great distance through the world.

A closer examination of the FireDeriv search results shows that a few searches (34 out

of the 1500 searches performed for this task) were trapped by this inferior local optima.

Of these 34, 5 happened using RS with Sampling=1 (both with and without caching), and

the rest happened to HC with various sampling levels, although more often with higher

sampling levels. In the worst case, using HC with Sampling=25 and no fitness caching,

the search got trapped at the local optima 9 times out of the 30 searches, or 30% of the

time. RS mistakenly chose the wrong optima because with Sampling=1, it was possible for

a single lucky initial condition to achieve better fitness here (going between 0% burned at

density= 1.01 to 100% burned at density=0.01) than was achievable in the primary phase

transition area. The HC, on the other hand, climbed (or drifted) its way into this local

optima, and was unable to escape thereafter. For the FireVariance task, only 9 searches

ended up in the inferior local optimum, all of them being HC. That the local optima trapped

more in the FireDeriv case is a little surprising, since the height of this local optima seemed

more pronounced in the FireVariance landscape. However, the FireDeriv landscape has a
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broader flat plateau between density 0 and 40, whereas the global optimum’s basin extends

out farther in FireVariance, providing a fitness gradient that helps lead more hill climbers

that direction. Apart from these exceptions, all the searches eventually ended up on or

around the global optimum / phase transition.

9.3.2.2. Segregation. In retrospect, the Segregation task may have been too easy a task

for this benchmark collection. The performance curves over time (Figure 9.10) show the

search dynamics, and all search methods quickly reach the optimum (or very close to it).

Although the search methods were allowed 20K model runs, in all cases search performance

had plateaued by 2000 model runs, and often much earlier. By the end of the search, all search

methods have reached optimal levels of fitness (except for a few of the Sampling=1 cases

which are very close, though not quite as high). Nevertheless, some search methods (GA-Gen,

GA-SS, and RS) reach the best fitness values more quickly than the others. This was part

of the motivation for using average fitness over time to measure overall search performance,

rather than solely looking at end-of-search fitness, which would be uninformative in cases

like this.

The ease of finding optimal solutions is explained by examining the fitness landscape,

which is shown in Figure 9.11. A large portion of the space (67 ≤ pct-similar-wanted ≤ 75)

yields optimal (or near-optimal) fitness values. The horizontal banding here is not a sampling

artifact - the search space was sampled at high resolution in both dimensions. Rather, these

bands are representative of discontinuities in model behavior depending on the value of the

pct-similar-wanted parameter. The pct-similar-wanted parameter determines the threshold

that agents compare their fraction of similar neighboring agents to, when deciding whether

to move. Since each agent can only have up to 8 neighbors, agents can only ever observe
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Figure 9.10. Search dynamics (performance over time) for each search algo-
rithm on the Segregation task, with Sampling=25 and fitness caching turned
on. (Error bars show 95% confidence intervals on the mean.)

fractions where the denominator is less than or equal to 8. Thus, changes to the pct-similar-

wanted parameter only affect model behavior when the change crosses a possible fraction

value. This creates large plateaus in the search space, which could potentially make it

difficult for search algorithms, because they provide little search gradient for moving toward

the high fitness region. However, the search space is fairly small, and the high fitness region is

itself a large plateau, which results in making this an easy task. The crucial parameter in this

fitness landscape is pct-similar-wanted, although in certain regimes (when pct-similar-wanted

is either large or small) the number of agents also affects the outcome.
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Figure 9.11. Fitness landscape for the Segregation task, calculated by exhaus-
tive search of the space using 100 repeated model runs for each combination
of parameters.

9.3.2.3. Ants. Although one reason for choosing the Ants task was to compare with Calvez

and Hutzler’s [2005] earlier experiment, a detailed comparison of search dynamics/performance

and turned out to be infeasible, for two reasons:

(1) The best-fitness performance curves they show in their paper are biased by noisy

sampling error, as they did not run independent trials to get an unbiased measure

of fitness (as described above in Section 9.2.5).

(2) We could not implement their specific genetic algorithm and re-run it to compare,

due to missing details in their paper necessary for replication of the experiment.

However, Calvez and Hutzler do report the results (parameter settings) discovered by their

search, and we can compare these with the results discovered by our search methods given
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(a) fitness landscape (b) noise landscape

Figure 9.12. Fitness (and noise) landscape for the Ants task. The best loca-
tions found by Calvez and Hutzler (C & H) [2005] and 30 GA-Gen searches
(with caching and Sampling=25) are compared to the global best (from an
exhaustive search). Substantial noise persists in the high fitness regions.

the same amount of computational effort (8120 model runs). These settings are diffusion-

rate= 88.6, evaporation-rate= 8.1, and 100 independent trials (model runs) with these settings

yield an average fitness value of 25.8 (with standard deviation of 7.6).

Unlike the previous two tasks, the exhaustive search of the Ants model was (necessarily)

performed at a lower resolution than the search algorithms being benchmarked: the two

parameters diffusion-rate and evaporation-rate were each varied from 0 to 99. The Ants

fitness landscape, and associated noise landscape, are shown in Figure 9.12. From this

exhaustive search, the best parameters found were diffusion-rate= 77, evaporation-rate= 8,

yielding a fitness of 26.1 (with standard deviation 6.3) in 100 independent trials. Due to

the high stochasticity of fitness evaluation, and it is not clear that this value is superior

to that found by Calvez and Hutzler. In general, fitness values in this region are roughly
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comparable - a large number of model runs would be necessary to determine statistical

significance. Figure 9.12 also shows the best parameter settings found by 30 independent

GA-Gen searches (with Sampling=25 and fitness caching on), after each search has run the

model 8120 times. Although most of the searches have found good fitness regions, and some

are quite close to the purported global optima, a few of the searches are still in poor fitness

regions of the space. It is difficult to draw any conclusions, however, in comparison with

Calvez and Hutzler’s approach (an elitist GA with periodic temporal variation in sampling),

because they only provide the results of a single search. In general, the search space is quite

noisy, which can impede search, but there is a large region of high fitness, similar to the case

with the Segregation task.

9.3.2.4. Fireflies. Although the 4-dimensional search space of the Fireflies task is small

enough to enumerate, the higher dimensional nature of the space still makes it difficult

to visualize. Several 2-D slices of the fitness landscape are shown in Figure 9.13. A key

feature to note is that there is a nonlinear interaction between the number and flashes-to-

reset parameters of the model. This results in a local fitness peak where number= 50 and

flashes-to-reset= 2, from which a hill-climber could not climb directly to the more optimal

region when number= 10 and flashes-to-reset= 1.

The best combination of parameters found in the exhaustive search was number= 10,

flashes-to-reset= 1, cycle-length= 6, flash-length= 1, resulting in a fitness value of 0.80. These

best settings for synchronization using the “advance” agent strategy still fall far short of the

synchronization achievable when using the “delay” agent strategy, which can consistently

achieve a synchrony value of 1.0. However, as we can see in Figure 9.13, there are many

parameter settings that achieve much lower synchrony values than this (closer to 0.5). Only

a relatively small portion of the search space has high fitness values, and there appear to
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Figure 9.13. Selected slices of the fitness landscape for the Fireflies task, calcu-
lated by exhaustive search using 100 repeated model runs for each combination
of parameters.

be inferior local optima elsewhere in the space (see, e.g., the medium-fitness region in the

lower right panel of Figure 9.13), potentially making the fitness landscape more challenging

to successfully navigate. However, the search algorithms were largely successful in finding

high fitness values close to the global optimum; for example, 15 of the 30 GA-Gen searches

(with caching off, Sampling=16) found solutions with fitness greater than 0.79, and all 30

had fitness greater than 0.76.

9.3.2.5. Flocking. With the Flocking task, we now move beyond the range of exhaustive

search, and no longer have a full fitness landscape to compare with. Both genetic algorithms

(GA-Gen and GA-SS) did well on this task, outperforming the other search methods using
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Figure 9.14. Best-so-far performance for the Flocking task for GA-Gen with
caching (a) and RS without caching (b), demonstrating the potential for neg-
ative impact of insufficient noise reduction.

the end-of-search performance measure in all cases except for Sampling=16 with caching

(where it was bested by SA) and Sampling=9 without caching (where it was bested by HC).

However, the most notable trend in the search dynamics for this task was related to noise

reduction and sampling levels, and applied broadly to all search techniques. As shown in

Figure 9.14, there was a definite pattern that when sampling was too low (Sampling=1, and

to some extent Sampling=4), search performance was qualitatively worse than for higher

sampling levels. This trend was not merely a matter of being slower to achieve good fitness

values; when fitness evaluation was too noisy, the search performance plateaued or even
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declined, suggesting that it would never find good solutions. As a result, when choosing a

sampling level for noise reduction, it may be better to err on the side of too much sampling,

rather than too little. With too much sampling, the search may progress more slowly, but

practitioners will at least be able to see that the performance curves are still headed upward,

and that if they run the search longer they are likely to find better solutions. With too little

sampling, practitioners may be deceived into believing that the fitness plateau indicates

that the search has reached the best value that can be found. Section 9.3.4 contains further

discussion of sampling levels and noise reduction, examining trends more broadly across the

benchmark tasks.

9.3.2.6. Daisyworld. The goal of the DaisyWorld task was to uncover a bug in the model,

by finding a discontinuity in the search space. While fitness is measured on a continuum,

being the amount of change between adjacent points in the space, what we are ultimately

interested in is whether the searches arrived at parameter settings that would reveal the bug

or not. However, as it turned out, apart from the model bug there were other locations

in the search space where a small change in albedo-of-whites could result in a large change

in the average number of daisies. Thus, some of the searches achieved high fitness but did

not find the bug. Among the 300 GA-Gen searches, 219 reached fitness values greater than

15000, but only 88 of these were at a bug-noticing location. Among the search methods, the

RS algorithm had the highest average performance overall for this task, but similarly it only

found 83 bug-noticing locations, out of 237 searches that reached greater than 15000 fitness.

The fact that the goal (finding a bug) was not perfectly aligned with the fitness function

(looking for large model changes that might represent either phase transitions or disconti-

nuities) makes the results of this task difficult to interpret. However, in general, the task

of finding a discontinuity somewhere in the search space resembles a “needle-in-a-haystack”
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type of problem, and is unsurprising that more sophisticated measures (GA, HC, SA) do not

outperform RS. At least, for this particular bug, there is no fitness gradient that can help

lead searches to discover it – they essentially have to run across the hyperplane that the bug

affects by chance.

9.3.2.7. Ethnocentrism. For the Ethnocentrism task, the GA-Gen algorithm performed

very well, giving the best performance (using the average performance across time measure)

on 9 out of 10 cases (5 noise sampling levels, with and without caching). It was only surpassed

by GA-SS for the Sampling=16 without caching case. Under the end-of-search performance

measure, GA-Gen also did quite well, although SA outperformed it in a few cases. GA-

Gen (and GA-SS) performed substantially better than SA on the Sampling=1 case though,

suggesting that they are better able to handle noisy fitness functions. A plot showing the

effect of fitness caching on the search dynamics for the Ethnocentrism task appears later in

Figure 9.16.

9.3.2.8. Wolf Sheep Predation. While the average best fitness achieved by any search

method was only slightly greater than 1.0, some individual searches discovered parameters

that yielded fitness as high as 1.4. Recall that the fitness function is the sum of the corre-

lation for the wolves and the correlation for the sheep/moose. Thus, perfect correlation on

both counts would result in a maximum fitness value of 2.0. This indicates that the search

methods were moderately successful in finding parameters that could reliably generate good

correlation with the real-world population trajectories. Given that the model was designed to

be a simple abstract model of a predator-prey ecosystem, that there is considerable stochas-

ticity in the model behavior, and that the real-world data is quite rough, a correlation of
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around 0.714 for both populations is pretty good. It is also possible that a more sophis-

ticated pattern-based matching measure (e.g., looking for periodic waveforms with similar

frequency in the real and simulated data) might be more lenient in their calibration measure,

and better highlight the similarities between the model and the Isle Royale ecosystem.

In terms of search performance, the GA-Gen algorithm had the best performance in more

than half of the cases, but the highest average fitness out of all the cases was achieved by

SA (shown in Figure 9.15). In this case the GA-Gen and GA-SS algorithms initially provide

better performance early in the search, but are eventually overtaken by SA.

9.3.3. Efficacy of fitness caching

In addition to comparing search algorithms against each other, another goal of this bench-

marking experiment was to empirically measure the benefit of fitness caching in the presence

of noisy fitness evaluations. Table 9.7 shows whether caching had a positive or negative

impact in each case, when measuring performance at the end of the search. Table 9.8 shows

the same information, but for the performance measure that takes the average search per-

formance over time.

Once again, these tables contain a large amount of information, which may be more easily

digested in the summary form shown in Table 9.9. There are several results worth noting.

(1) Caching has little, if any, consistent effect on RS. For about half of the tasks the

effect is positive, and in the other half it is negative. The negligible effect of caching

here is logical, since the likelihood of RS randomly sampling the same point in the

14The actual breakdown for these parameter settings was 0.67 average correlation for the sheep/moose, and
0.74 average correlation for the wolves.
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Model/Task Sampling RS HC SA GA-Gen GA-SS

FireDeriv 1 + + + - -

Segregation 1 - + + + -

Ants 1 + - - - -

Fireflies 1 + - - - -

Flocking 1 + + + - -

Daisyworld 1 - - + - -

Ethnocentrism 1 + - - - -

Heatbugs 1 + + + - -

WolfSheep 1 - - + + +

FireDeriv 4 + + + + +

FireVariance 4 + - - - -

Segregation 4 - + - - +

Ants 4 - + + - -

Fireflies 4 + + - - -

Flocking 4 - - - + -

Daisyworld 4 - + + + +

Ethnocentrism 4 - + + - -

Heatbugs 4 - + + - -

WolfSheep 4 - + + + +

FireDeriv 9 - - - - -

FireVariance 9 - + - - -

Segregation 9 + - + + +

Ants 9 - + + - -

Fireflies 9 - + + - +

Flocking 9 + - + + +

Daisyworld 9 + + + + -

Ethnocentrism 9 + + - + +

Heatbugs 9 - + + - +

WolfSheep 9 - + + - +

FireDeriv 16 - + + + +

FireVariance 16 - + + - -

Segregation 16 + + - + -

Ants 16 + + + + -

Fireflies 16 - + + - +

Flocking 16 - - + - +

Daisyworld 16 - - + + +

Ethnocentrism 16 - + + + +

Heatbugs 16 - + + - -

WolfSheep 16 - + + + +

FireDeriv 25 + + - + -

FireVariance 25 - + - + +

Segregation 25 + - + - -

Ants 25 - + - + +

Fireflies 25 + + + + +

Flocking 25 - + + + +

Daisyworld 25 + - + + +

Ethnocentrism 25 + + - + +

Heatbugs 25 - + + + +

WolfSheep 25 + + + + +

Table 9.7. Benefit of fitness caching when measuring performance at end of
search. (+ indicates a positive effect, and - indicates a negative effect.)
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Model/Task Sampling RS HC SA GA-Gen GA-SS

FireDeriv 1 + + + - -

Segregation 1 - + + + -

Ants 1 + - + - -

Fireflies 1 + + - - -

Flocking 1 - + + - -

Daisyworld 1 - - + - -

Ethnocentrism 1 + - - - -

Heatbugs 1 + + + - -

WolfSheep 1 - + + + +

FireDeriv 4 + - + + +

FireVariance 4 - - - - -

Segregation 4 - + + - +

Ants 4 - + + - -

Fireflies 4 - + - - -

Flocking 4 - + + + -

Daisyworld 4 + + + + +

Ethnocentrism 4 - + - + +

Heatbugs 4 - + - - -

WolfSheep 4 - + - + +

FireDeriv 9 - + + - +

FireVariance 9 + - + - -

Segregation 9 + - + + +

Ants 9 + + + - -

Fireflies 9 - + + + +

Flocking 9 - + - + +

Daisyworld 9 - + + + +

Ethnocentrism 9 + + + + +

Heatbugs 9 - + - + +

WolfSheep 9 + + + - +

FireDeriv 16 - + + + +

FireVariance 16 - + + - -

Segregation 16 + + + + +

Ants 16 + + + + -

Fireflies 16 - + + - +

Flocking 16 - - - + +

Daisyworld 16 + - + + +

Ethnocentrism 16 - - - + +

Heatbugs 16 + + + + -

WolfSheep 16 - + - + +

FireDeriv 25 + + - + +

FireVariance 25 - - + + +

Segregation 25 + + - + -

Ants 25 - + - + +

Fireflies 25 - + - + +

Flocking 25 - + + + +

Daisyworld 25 - - + + +

Ethnocentrism 25 + + - + +

Heatbugs 25 - + - + +

WolfSheep 25 - + + + +

Table 9.8. Benefit of fitness caching when measuring performance averaged
across time. (+ indicates a positive effect, and - indicates a negative effect.)
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Figure 9.15. Best-so-far performance for each of the different search algorithm
on the WolfSheep task with Sampling=10 and fitness caching turned on. Error
bars show 95% confidence on the mean. Note that despite running each search
30 times, the confidence intervals are still fairly wide, meaning that search
performance can vary substantially from one search to another.

search space twice is fairly low, and even if it does, it does not affect further choices

about where to search in the space.

(2) Caching usually has a beneficial effect on both HC and SA, except for the lowest

sampling levels (where the fitness landscape is noisiest), where caching is sometimes

helpful and sometimes harmful. The result that caching is more helpful to HC and

SA than to other methods likely stems from the fact that HC and SA operate more
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Search Algorithms
Sampling RS HC SA GA-Gen GA-SS Total
1 sample 6/9 4/9 6/9 2/9 1/9 19/45
4 samples 3/10 8/10 6/10 4/10 4/10 25/50
9 samples 4/10 7/10 7/10 4/10 6/10 28/50
16 samples 2/10 8/10 9/10 6/10 6/10 31/50
25 samples 6/10 8/10 6/10 9/10 8/10 37/50

Total 21/49 35/49 34/49 25/49 25/49 140/245

(a) End-of-search performance measure

Search Algorithms
Sampling RS HC SA GA-Gen GA-SS Total
1 sample 5/9 6/9 7/9 2/9 1/9 21/45
4 samples 2/10 8/10 5/10 5/10 5/10 25/50
9 samples 5/10 8/10 8/10 6/10 8/10 35/50
16 samples 4/10 7/10 7/10 8/10 7/10 33/50
25 samples 3/10 8/10 4/10 10/10 9/10 34/50

Total 19/49 37/49 31/49 31/49 30/49 148/245

(b) Avg. across time performance measure

Table 9.9. Summary of the effects of caching, by search algorithm and noise
sampling amount. Each cell shows the number of tasks where fitness caching
was beneficial out of the number of possible tasks. (For Sampling=1 the value
is out of 9 rather than 10 because the FireVariance task was only run for higher
sampling levels.)

locally than the other search methods. Thus are more likely to re-sample the same

points in the search space repeatedly, giving a larger potential benefit for caching

previously examined values.

(3) When fitness evaluation is noisy (low sampling levels), caching clearly has a harmful

effect on GA performance. However, equally striking is the pattern that when the

noise is reduced by sampling, fitness caching clearly improves GA performance. In

particular, at the highest level of sampling (25 repeated model runs per fitness

evaluation), fitness caching benefited GA-Gen in either 9 or 10 out of the 10 tasks
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(depending on the performance measure). The trend is present for both GA-Gen

and GA-SS.

The reason that the GA performance is more consistently impacted (both positive and

negatively) by fitness caching at low and high noise levels is not entirely clear. With high

noise, we hypothesize that the effects of frozen (cached) incorrect fitness values can be

more detrimental to population-based search methods than other methods, since individuals

with (falsely) apparent high-fitness may be difficult to weed out from the population, thus

keeping search resources tied up in unproductive regions of the space. Also, population-

based approaches have an implicit form of noise reduction by resampling those individuals

who remain in the population over several generations, but this mechanism is thwarted when

fitness caching is turned on.

Although most apparent for the GA search methods, there is a general pattern that

fitness caching is more beneficial at higher sampling levels (reduced noise). This is not too

surprising, considering that if fitness evaluation was completely deterministic (without noise),

then fitness caching could not result in any loss of performance, and could only improve the

situation. However, it is good to confirm this trend in the cases of intermediate noise, as our

benchmarks show. It is also interesting to observe the extent to which the combination of

high noise and fitness caching degrades GA performance.

To get more insight about how fitness caching affects search dynamics, we will zoom in to

look at the search behavior over time, for a specific task: Ethnocentrism. The performance

benefit due to fitness caching as the GA-SS search progresses is shown in Figure 9.16. In

this figure, note the successive “peaks” in the curves plotting the caching benefit: first

Sampling=1 peaks, then Sampling=4, Sampling=9, etc., followed by declines. As Figure

9.16 shows, fitness caching can provide a benefit to the search process early on in the search,
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Figure 9.16. Caching benefit search dynamics in the Ethnocentrism task, for
the GA-SS algorithm, with varying levels of sampling to reduce noise in the
fitness evaluation. Benefit is measured as the difference between the average
search performance (over 30 independent searches) with caching and without.

by allowing it to explore further more quickly (by avoiding recomputing previously tested

solutions). However, when noise is substantial enough (i.e. Sampling=1 or Sampling=4), it

eventually damages performance, possibly by preventing fine-tuning of solutions found by

the GA – something that is possible when fitness caching is turned off. Although the effects

of caching vary from one ABM exploration task to another, and sometimes results are quite

noisy, the Ethnocentrism task illustrates a trend in GA performance (both GA-Gen and



326

GA-SS) that is also exhibited on several other tasks. For noisier fitness functions, caching

is more likely to be beneficial early on in the search process, and detrimental later in the

search. For less noisy fitness functions, it takes longer for the benefit of caching to be realized

by the search, but the detrimental effect is avoided.

9.3.4. Noise reduction through varying levels of repeated fitness sampling

Before discussing the effectiveness of various levels of noise reduction, we first examine the

amounts of noise present in the fitness landscapes. When search spaces are small enough,

such as with the Ants model (Figure 9.12), it is possible to get a complete picture of the

fitness noise throughout the whole search space. For larger spaces this is impossible, but

we can still obtain a fitness noise profile by sampling a number of points in the space and

measuring the variance (or standard deviation) of the behavioral measure at those locations.

For uniformity (and convenience), we will exclude from this section’s analysis those tasks

that themselves involve measuring variance (FireVariance) those tasks that involve taking

a derivative with respect to some parameter (FireDeriv and DaisyWorld), and those tasks

that involve minimization rather than maximization (HeatBugs). For each of the remaining

tasks, we chose 1000 points uniformly at random in the search space, and measured noise

as the standard deviation of 10 replicate runs at those points. The distributions of noise

throughout the space for selected tasks are shown in Figure 9.17, and the average (mean)

noise level for each task is shown in Table 9.10.

For each task we also obtained an approximate ε-distribution (distribution of fitness

differences between neighboring points in the search space, as defined previously in Chapter

8), and these are shown in Figure 9.18.
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Figure 9.17. Distribution of noise in the search spaces for six of the ABM
exploration tasks, as estimated from 1000 randomly sampled points in the
search space, with 10 replicate runs at each point.

Model/Task Noise (stdev)
Ants 4.01
Ethnocentrism 0.0191
Fireflies 0.0365
Flocking 0.539
Segregation 1.28
WolfSheep 0.192

Table 9.10. Average noise level for each task. Noise level is measured as the
standard deviation of repeated behavioral measurements when running the
model multiple times with the same parameter settings.

To further investigate the effects of noise reduction by repeated sampling in the presence

of fitness caching, we use the probability of a false switch (P (false switch)) that we derived
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Figure 9.18. Distribution of differences between neighboring points in the
search space (ε-distribution), for six of the ABM exploration tasks, as esti-
mated from 1000 randomly sampled points in the search space, with 10 repli-
cate model runs at each point and its neighbor (obtained by the mutation
operator).

in Chapter 815. Specifically, we calculate P (false switch) by a numerical approximation

of Equation 8.3, using the ε-distribution and mean noise value sampled from each task’s

fitness landscape. The resulting false switch probabilities for each task at each sampling

level are shown in Figure 9.19. Notice the decreasing returns, in terms of the reduction of

the likelihood of false switches occurring as you increase the amount of sampling to reduce

noise.

15We do not use the false optima measure that was also derived in Chapter 8, because the benchmark search
methods used Gaussian mutation, which does not permit calculation of the number of neighbors that each
point has in the search space; rather, there is a probability distribution over possible neighbors.
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Figure 9.19. The probability of a false switch due to noise in the fitness eval-
uation, for each benchmark task and noise reduction sampling level.

We are further interested in the relationship between P (false switch) and the perfor-

mance of the various search methods. A plot of performance versus P (false switch) for each

task is shown in Figure 9.20. All other things being equal, a lower P (false switch) is always

better – but in this case, the lower P (false switch) is only achieved by additional sampling.

Because we fixed the total number of evaluations allowed for each search in these bench-

marks, additional sampling means that the search will sample fewer points. Thus we find

that in many cases, a medium level of P (false switch) value often corresponds to the highest

performance on a certain task. Unfortunately, different values of P (false switch) achieve

optimal performance on different models, which limits the usefulness of the P (false switch)

measure for predicting the optimal amount of sampling for noise reduction. This observation

for these practical ABM benchmark tasks, along with the difficulties in predicting sampling

levels for each of the artificial fitness landscapes in Chapter 8, suggest that the ε-distribution
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for a given landscape is insufficient for precisely predicting the impact of noise on that land-

scape. Additional information about the fitness landscape, or the spatial distribution of

noise within that landscape, appears to be needed in order to characterize the noise impact

with reasonable precision. However, the best performance in these benchmark tasks for the

genetic algorithms (GA-Gen and GA-SS) was always achieved for P (false switch) values

between 0.25 and 0.6. Thus, this information could serve as a rough (but useful) guideline

for an upper bound on what P (false switch) should be for effective genetic search; i.e.,

practitioners may wish to choose a sampling level sufficient to reduce the likelihood of a false

switch occurring to below 60%. While a more precise value to predict optimal performance

would be preferable, a guideline like this holds promise to help users avoid particularly bad

search performance. Optimal noise reduction and sampling techniques for heuristic search

are an active area of research, and much work remains to be done to improve methodology

for choosing appropriate noise levels for efficient search.

9.3.5. Benchmark summary conclusions

Unfortunately for practitioners, the relationship between the performance of search algo-

rithms and the noisy complex fitness landscapes created by ABM exploration tasks is neither

simple nor straightforward. Complex interactions are involved, and different algorithms may

be optimal for different fitness landscapes with certain features and search space dimensions.

Despite this, there is some good news. In this chapter we have shown that genetic algo-

rithms (specifically the generational GA) can perform well on a variety of search tasks with

varying levels of noise. Although genetic algorithms may not be the optimal search method

for some specific models and noise levels, in our benchmark tests it consistently provided

good performance. Furthermore, the performance of the genetic algorithm appeared to be



331

0.45 0.60 0.75

P(false switch)

21.0

22.5

24.0

25.5

fit
ne

ss

Ants

0.3 0.4 0.5 0.6 0.7

P(false switch)

0.34

0.36

0.38

0.40

fit
ne

ss

Ethnocentrism

0.3 0.4 0.5 0.6

P(false switch)

0.72

0.74

0.76

0.78

fit
ne

ss

Fireflies

0.56 0.60 0.64 0.68

P(false switch)

16

17

18

19

20

fit
ne

ss

Flocking

0.2 0.3 0.4 0.5

P(false switch)

99.2

99.4

99.6

99.8

100.0

fit
ne

ss

Segregation

GA-Gen GA-SS HC SA

0.48 0.56 0.64

P(false switch)

0.45

0.60

0.75

0.90

fit
ne

ss

WolfSheep

Figure 9.20. The probability of a false switch due to noise in the fitness evalu-
ation, for each benchmark task and noise reduction sampling level (with fitness
caching turned on).

improving, relative to the other search algorithms we examined, as the search spaces became

larger and higher dimensional. This pattern is particularly encouraging, since many research-

caliber ABMs have large numbers of parameters that need to be explored and analyzed. The

benchmarks also demonstrated that the practice of fitness caching, even in the presence of

noisy fitness evaluation, can be valuable for improving search performance, although not

in the noisiest landscapes, unless sufficient noise reduction is performed. These benchmark

tests, in conjunction with the ABM case studies presented in Chapters 4 through 7, show

that genetic algorithms can rise to this challenge and provide an effective mechanism for
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ABM exploration and analysis. As stated in the introduction to this chapter, although these

benchmark experiments are far more comprehensive than any previous effort to characterize

the performance of genetic algorithms (or other meta-heuristic search algorithms) in this do-

main, the results are not intended to be the final word on this subject. Instead, this chapter

lays down the necessary groundwork for this type of research, and provides an open invita-

tion for other researchers to follow in experimentation with alternative algorithms, methods,

techniques and parameterizations, so that together we can provide practical guidance to the

emerging area of QBME-style ABM analysis.
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CHAPTER 10

BehaviorSearch: A New Tool for Metaheuristic ABM Parameter

Search

“At each increase of knowledge, as well as on the contrivance of
every new tool, human labour becomes abridged.”

– Charles Babbage

“With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.”

– John von Neumann

The practice of designing and building new tools is crucial to computer science, and has

been so since the early days of Charles Babbage’s difference engine. Something which has

changed is that most tools are now built in software, rather than at the hardware level.

Compilers are an example of a software tool that fundamentally changed the landscape of

computer science. However, many other tools have had substantial impact on the discipline,

and society at large. The Google search engine is an excellent case in point. The theoretical

ideas behind PageRank algorithm developed by Sergey and Brin [1998] were not entirely

novel; in fact, similar graph-based ranking algorithms go back much further to ideas in in-

formation retrieval, bibliometrics, sociometry, and econometrics [Franceschet, 2011]. If Page

and Brin had merely talked about the ideas of PageRank without acting on them to build

a practical search engine (Google), the impact might have been limited to a few academic
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journal papers and theoretical arguments. Instead, this tool revolutionized how people ac-

cess and discover relevant content on the World Wide Web (incidentally, it also gave birth

to a multi-billion-dollar company). There are, naturally, many other examples of the suc-

cess of tool building, including the NetLogo [Wilensky, 1999] platform that BehaviorSearch

interfaces with. Agent-based modeling lies at the intersection of computer science and many

other disciplines, and as it is a growing field, there are many opportunities for building useful

tools to serve this community. I am a strong proponent of the creation of tools to support

new and innovative work in this domain, particularly in the analysis of ABM behavior, which

is a challenging area with many AI applications.

With new tools comes new power, and with this power also comes responsibility. As is

the case with many tools, BehaviorSearch [Stonedahl & Wilensky, 2010a] is one that may

be alternatively used or abused, and thus I feel compelled to issue a warning, relating to

von Neumann’s glib remark about his ability to “fit an elephant”. While von Neumann was

referring to mathematical/statistical modeling methods, his broader point also applies to

agent-based models. By giving your model enough parameters, your model can express a

wide range of behavior. So if you want to show the world a model that displays elephant-

trunk-wiggling behavior, BehaviorSearch can help you find parameter settings that will do

that. Does the discovery of such parameters mean you have developed a good model? Not

necessarily. It only means that the behavior you sought exists somewhere in the parameter

space. Other questions must be considered: are the parameter assignments that caused

this behavior reasonable? what effect does each parameter have on the outcome, and are

those trends reasonable? One could use BehaviorSearch merely to calibrate/tune model

parameters to highlight positive aspects of the model. However, it is the responsibility of

the model author to carry out a critical analysis of the model – perhaps even to serve as
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one of the model’s severest critics. Fortunately, BehaviorSearch can assist with this process

as well, to perform multi-variate sensitivity analysis (as with the Artificial Anasazi model

described in Chapter 6), and to search for anomalous behavior that could be indicative of

model errors.

In this chapter, we will discuss the design and implementation of BehaviorSearch, which

is an open-source cross-platform tool that offers several search algorithms and search-space

representations/encodings, and can be used to explore the parameter space of any ABM

written in the NetLogo language. It was implemented in Java, and interfaces with the

NetLogo modeling environment, using NetLogo’s Controlling API. The user specifies the

model file, the desired parameters and ranges to explore, the search objective function, the

search method to be used, and the search space encoding, and then BehaviorSearch runs

the search and returns the best results discovered (and optionally the data collected from all

of the simulations run along the way). A beta-release of BehaviorSearch is freely available

for download1. Our intent is to make advanced parameter search techniques accessible to

a wide range of modelers so that the methods and ideas discussed in this thesis can be

put into practice by others. We will begin by addressing the design goals, followed by a

description of the software’s current feature set (and how it supports those design goals).

Finally, we discuss architectural and implementation details, including the ability to extend

BehaviorSearch with new adaptive search algorithms and search space representations. This

chapter will provide an overview of this software, but not detailed instructions for how to

use it. For the latter, the reader is referred to the tutorial/documentation included with the

software.

1Available at: http://www.behaviorsearch.org/



336

10.1. Design and Features of BehaviorSearch

10.1.1. Design Goals

BehaviorSearch follows in the tradition of NetLogo [Wilensky, 1999, 2001; Tisue & Wilensky,

2004], and Logo [Papert, 1980] before it, in embracing the twin design goals of “low threshold”

and “high ceiling”. By this we mean that the BehaviorSearch tool should be both easy for

beginners to learn and use (“low threshold”), while also providing advanced features that

will allow expert modelers to engage in cutting-edge research and analysis (“high ceiling”).

To be clear, the “low threshold” goal for NetLogo, which aims to support use by elementary

school students, is lower than that of BehaviorSearch, which primarily targets NetLogo’s

research audience. However, increasingly NetLogo is being used by undergraduates or even

high school or middle school students who are developing agent-based models for research

projects, and we would like BehaviorSearch to be accessible to these audiences, as well as

researchers from various disciplines who are non-expert programmers but have adopted ABM

methodologies for their research. Just as NetLogo strives to make the creation of agent-based

models accessible to children and novices, BehaviorSearch aims to facilitate model analysis

by making search and optimization techniques accessible to all modelers. The features that

support these design goals are detailed in Sections 10.1.3 and 10.1.4 below. In conjunction

with these design goals, BehaviorSearch is also designed to be extensible and open. This

extensibility means that it should be possible to add new search algorithms and features in

a simple modular way. Furthermore, the BehaviorSearch source code should be open and

available to all, which provides several benefits that are discussed further in Section 10.2.
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10.1.2. General features

Parameter-type flexibility. BehaviorSearch is capable of searching a combination of nu-

merical (discrete/continuous), boolean, and categorical parameters. This is an important

feature, since ABM parameters often take various forms, and are not constrained to always

be of uniform type.

Search method variety. BehaviorSearch offers several different search algorithms and

search space representations that users can employ. While the primary focus of my research

has been on genetic algorithms, we have designed it as a general tool for applying any type

of metaheuristic search algorithm to explore ABM parameter spaces. At present, Behav-

iorSearch supports the following search algorithms: random search, stochastic hill climbing,

simulated annealing, and two variants of the genetic algorithm (generational GA and steady-

state GA). We plan to add additional algorithms in the future. This flexibility is important

since different approaches can be more or less effective for exploring different models.

QBME framework support. BehaviorSearch supports the QBME framework (described

in Chapter 3) by providing options for different ways to condense data at different levels of

ABM analysis: e.g., one can take the median value across model time steps, but then look at

the standard deviation of results across multiple replicate runs with different random seeds.

Best-checking. As discussed in earlier in Section 9.2.5, BehaviorSearch provides built-in

support of best-checking, to prevent users of the software from being misled by high fitness

values resulting from ABM stochasticity (and so that users can easily detect if the search

algorithm is being misled).
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Figure 10.1. Windows graphical installer for BehaviorSearch.

10.1.3. “Low threshold” features

Graphical installer for WindowsTM. In an effort to make the software easy to use, the

first step is making it easy to install. Since BehaviorSearch requires NetLogo to perform

model runs, it needs to reside in a subfolder of the NetLogo installation folder. This can be

a challenge, particularly on variants of the Windows operating system, where users may have

difficulty finding the NetLogo installation folder, and may not have write-access privileges

to modify its contents. As a result, we provide a graphical executable installer for Windows

(see Figure 10.1) to simplify this installation process. (Installation on Mac/Linux computers

is also reasonably straightforward, and generally just requires dropping a folder into the

NetLogo application directory.)

Graphical User Interface. BehaviorSearch’s GUI provides an easy way to both design

and run parameter searches. The dialog for designing experiments is shown in Figure 10.2,
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Figure 10.2. BehaviorSearch GUI for designing experiments involving model
search, exploration, and optimization. This screenshot shows a search protocol
for one of the FireDeriv exploration tasks discussed in Chapter 9.

and the dialog for launching parameter searches is shown in Figure 10.3. The GUI also

provides error-checking and widget constraints to prevent users from creating malformed

search queries.

Real-time feedback. BehaviorSearch provides integrated real-time search progress feed-

back. If searches are run from the BehaviorSearch GUI, then this information is displayed
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Figure 10.3. BehaviorSearch GUI dialog for launching search experiments.

via a progress bar and an auto-updating plot of fitness versus time (see Figure 10.4). Cou-

pled with best-checking, this feedback permits the user to gauge search progress as it goes,

as well as to get the latest information about the best model parameters found so far.

Natural learning progression. BehaviorSearch builds off of the success of NetLogo’s

built-in BehaviorSpace tool [Wilensky & Shargel, 2002], which provided a low-threshold way

to perform grid/factorial parameter sweep experiments. Because the search space specifica-

tion and model data collection were designed to be similar, users of NetLogo’s BehaviorSpace

tool should be able to get started quickly with BehaviorSearch. This design provides a nat-

ural learning progression: NetLogo (for building the model) ⇒ BehaviorSpace (for simple

model analysis) ⇒ BehaviorSearch (for more advanced analysis and exploration).

Tutorial. BehaviorSearch ships with an included tutorial, which provides walk-through

directions for using the tool to accomplish an example exploration task, as well as extensive

coverage of the software’s many features. All too often, academic software is thrust upon

the world with insufficient information for users to even get started with it, let alone master

its use. The great success and popularity of the NetLogo modeling toolkit is partially a
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Figure 10.4. BehaviorSearch GUI dialog displaying search progress: this in-
cludes the fitness levels achieved as the search progresses, the best parameter
settings found by the search so far, the percentage of the search that is com-
pleted, and an estimate of the amount of time remaining.

result of the thorough documentation and excellent tutorials that accompany it. We seek to

replicate this success in BehaviorSearch, by ensuring that users have sufficient documentation

to effectively learn how to use the software.

Integrated help and examples. Beyond the tutorial (which is available both on the Be-

haviorSearch website, and from the Help menu), the BehaviorSearch GUI provides integrated

help/documentation via tooltips and localized help buttons which are only a click away. The

non-GUI version of BehaviorSearch also provides help that documents each of the command

line arguments/options for running. The software package also includes several example
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Figure 10.5. BehaviorSearch website, with supporting documentation and materials.

search experiment protocols, demonstrating how one might use BehaviorSearch to explore

some of the models that come in NetLogo’s models library.

Project Website. The BehaviorSearch tools is also supported by the accompanying project

website (see Figure 10.5), located at http://www.behaviorsearch.org/. This website pro-

vides additional resources, such as a summary of features, information about new releases,

links to relevant papers, and a contact form for user feedback. This site also links to a Google

Code open source project website, with an issue/bug tracker, and access to the source code.
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10.1.4. “High ceiling” features

Multi-resolution data output. BehaviorSearch can collect and store data at various levels

of detail: recording each model run performed, each fitness evaluation, each time a new “best”

is found, as well as the final best parameter settings at the end of each search. While novices

can effectively use BehaviorSearch by simply looking at the final best parameters found,

more advanced users can dig deeper into the search process and the results and parameters

examined along the way.

Parametric derivatives. Built-in support for approximating derivatives of a behavioral

objective function with respect to a specified parameter. As discussed in Chapter 3, this is

useful for detecting phase transitions and critical points in the parameter space.

Parallelization and multi-threading support. BehaviorSearch was designed from the

ground up with multi-threaded support2 for parallel searching, offering improved performance

for multi-processor/multi-core computers. As the number of cores in desktop computers

proliferates, harnessing this parallelism becomes a crucial performance issue.

Command-line operation. BehaviorSearch includes a command-line version (see Figure

10.6) that is separate from the GUI version. This facilitates scheduling batch search opera-

tions, and more importantly, it allows one to run BehaviorSearch on remote clusters that do

not have GUI support. There has been a substantial increase in recent years in both high

performance computing clusters and cloud computing. By providing a command line version

of BehaviorSearch, it is possible for users to spawn any number of independent searches and

run them in parallel.

2Implementation note: this takes advantage of the improved concurrency features of Java 5/6, such as
java.util.concurrent.ExecutorService and javax.swing.SwingWorker.
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Figure 10.6. BehaviorSearch command line version. When BehaviorSearch
is run without arguments, it displays all of the command line options/usage
information, as shown above.

Extensibility. BehaviorSearch was developed using an extensible object-oriented frame-

work, allowing new search algorithms and search space representations to be easily added,

as will be discussed further in Section 10.2.

10.2. Architecture and Implementation

10.2.1. Open Source Status

BehaviorSearch has been released under an open-source license (specifically, the BSD 3-clause

license3), which provides several important benefits.

3See: http://www.behaviorsearch.org/LICENSE.TXT



345

(1) This openness of source code provides transparency in academic research, so that re-

searchers can fully examine the specific algorithms that are being employed to search

the parameter spaces of their models. Failure to provide this level of transparency

could compromise the legitimacy of this tool for serious research.

(2) This openness allows advanced users to customize the software to their own needs

if necessary. The open source status guarantees complete extensibility.

(3) This openness further encourages community-contributed improvements to the soft-

ware; users who are also programmers may submit bugfixes, add new features, and

generally contribute to further enhancements of this project. The open source sta-

tus is an invitation to become a member of a team effort in producing a tool that

is useful to the community.

(4) This openness also promotes an open exchange of ideas, and may allow other ABM

methodology researchers to design new tools to support query-based model explo-

ration and analysis. Our goal here is to promote this research area (and practice

in the field), not merely to promote our own specific tool for accomplishing it. The

source code may assist others in developing alternative or derivative software that

will push the field forward.

Because BehaviorSearch is open source software, the entire codebase is available for users

to review, adapt, and extend, in case there are additional features which they require for

their work. This provides the final rung in the ladder toward a “high ceiling”; expert users

may dive under the hood to modify BehaviorSearch to meet their own needs if necessary.
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Figure 10.7. Design schematic of the BehaviorSearch architecture.

10.2.2. Modular Architecture

However, providing software with an open source license is no substitute for solid software

design and clean architecture. Making public a messy spiderweb of code does little to promote

extensibility or encourage community contributions. Thus, a modular design is crucial so

that changes can be made to one part of the code without affecting others. Figure 10.7 shows

a schematic of the overall architectural design, and also how BehaviorSearch interfaces with

NetLogo. In particular, note that the BehaviorSearch engine is separated from the GUI

layer, and does not depend on it.

At a finer level of detail, the BehaviorSearch codebase (written in Java) is divided into

eight packages for organizational purposes:

• bsearch.algorithms - contains all of the search algorithms
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• bsearch.app - contains the main code driving the BehaviorSearch application

• bsearch.evaluation - contains code for handling fitness evaluation and fitness

caching

• bsearch.nlogolink - handles all of the communication with the NetLogo platform

• bsearch.representations - contains all of the search space representations

• bsearch.space - contains a representation of the parameter space

• bsearch.test - a package that contains unit testing

• bsearch.util - a package containing miscellaneous utility functions

As shown in Figure 10.7, BehaviorSearch also contains an extensions API. This API

provides a clean interface for extending its capabilities via new search algorithms and search

space representations, which will help support both continued research and any special needs

of end users of the tool. To add a new search algorithm or search space, it is possible to simply

write a new subclass of the AbstractSearchMethod class, drop it into the bsearch.algorithms

package, and add one line to a text file that lists the search methods available to Behav-

iorSearch. The scenario for adding a new search space representation is similar. These

plugin-style mechanisms are supported by the Java Reflection API. In general, the modular

design of BehaviorSearch permits the addition of new functionality without editing any of

the codebase, apart from the new Java class being added.

Search experiment protocols designed in BehaviorSearch are stored as XML documents

(see Figure 10.8). Since XML is an industry-wide standard for data exchange, this provides

compatibility for other tools to easily generate or manipulate search protocol files. The

specific XML document format is formally specified by a DTD (Document Type Definition)

which is included with the software package. The XML search protocol files also track
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Figure 10.8. Example search protocol (in XML format) for one of the FireDeriv
task experiments.

versioning, so that newer versions of BehaviorSearch that add new features to the protocol

can seamlessly update search protocols created with prior versions.

10.3. Conclusion

Prior to the release of BehaviorSearch, QBME-style model analysis was only accessi-

ble to programmers who could either connect ABM toolkits to genetic algorithm (or other

metaheuristic search) libraries, or write their own code from scratch. We have provided an

easy-to-use tool with a graphical user interface that is integrated with a widespread and

easy-to-use ABM platform (NetLogo), which constitutes considerable progress toward “low
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threshold” ABM exploration. This tool also contains a variety of advanced features that

we believe will be useful for serious ABM researchers, supporting a “high ceiling” so that

this audience is not constrained. Furthermore, BehaviorSearch has been designed to be

both open and extensible, to support customization and further development. In all these

respects, BehaviorSearch provides a significant contribution to the practice of agent-based

modeling. I believe this contribution is much needed, given the current state of the field: all

too frequently ABMs are published and conclusions are drawn regarding these models, de-

spite inadequate exploration of the model’s parameter space, and insufficient model testing.

We believe that a tool that is efficient, effective, and easy-to-use will lower the barriers to

performing comprehensive ABM analysis and, given sufficient levels of adoption, will raise

the community’s standards for exploration of model behavior. Through informal conver-

sations with researchers and modelers at conferences, workshops, and symposiums, I have

confirmed that there is considerable interest in BehaviorSearch. It has also been discussed

and recommended in ABM/complex systems workshops at the AAAI Fall Symposium in

Arlington, Virginia and an NEH summer seminar on computational modeling in the hu-

manities in Charlotte, N.C. Additionally, since the initial beta release, this software tool

has been downloaded over 500 times. While this represents but a minute fraction of NetL-

ogo’s userbase (which numbers in the hundreds of thousands, comprised of both researchers

and educational users), it still demonstrates significant interest in a small segment of early-

adopters in the ABM researcher community. We anticipate a significant increase in adoption

following the release of BehaviorSearch 1.0.
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CHAPTER 11

Conclusions

“I’ve always been more interested in the future than in the past.”
– Grace Hopper

“Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.”

– Winston Churchill

I share Grace Hopper’s interest in the future, and have little desire to belabor the past.

Accordingly, I will devote little time to the reiteration of points that were already made in

the preceding ten chapters. Instead, I will merely provide a concise summary of the major

contributions of this thesis, followed by a discussion of the broader impact of this work and

applications to other research areas. The chapter concludes with a discussion of promising

avenues for future work.

11.1. Contributions and Broader Impact

11.1.1. Contribution Summary

(1) We have provided the first comprehensive literature review (Chapter 2) of the in-

tersection of research in genetic algorithms and ABM parameter analysis.



351

(2) We have extended Miller’s [1998] work on Active Nonlinear Testing, and developed

a new framework (Chapter 3) for using metaheuristic search methods (such as GAs)

to explore and analyze ABM behavior.

(3) We have shown, through a series of case studies (Chapters 4 through 7), that genetic

algorithms can be an effective method for exploring and discovering interesting

behavior in serious modeling research in a variety of fields. These case studies also

resulted in contributions to the application domains.

(4) We have derived new heuristics for quantifying the impact of uncertainty on noisy

fitness landscapes (Chapter 8).

(5) We have designed a suite of ABM analysis benchmarks on a variety of models with

varying levels of search space dimensionality and complexity (Chapter 9).

(6) We have and performed the first comprehensive experiment benchmarking perfor-

mance of genetic algorithms against other comparable metaheuristic search algo-

rithms (Chapter 9).

(7) We have designed and developed a new tool (BehaviorSearch), to allow ABM practi-

tioners to easily apply genetic algorithms (and other metaheuristic search methods)

to analyze the parameters of their models (Chapter 10).

11.1.2. Additional Applications and Implications

While in the preceding chapters we occasionally touched on the broader impact of the con-

tributions of this thesis work, here we will provide some additional perspective on the con-

nections to other applications or research areas.

Noise reduction methodology. In Chapter 8 and also Chapter 9 we investigated the

impact of noisy fitness evaluation in conjunction with fitness caching. This line of research
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is beneficial not only for ABM exploration, but also for other domains with slow noisy

fitness evaluation. For instance, evolving cellular automata rules [Packard, 1988; Mitchell

et al., 1996; Sondahl & Rand, 2007] is another area which is similar in this respect. For

even moderate-sized lattices, it is impossible to evaluate the rules on all possible initial

configurations, so fitness evaluations of the rules are only noisy estimates of the rule’s true

performance. Furthermore, fitness evaluation can be slow, depending again on the lattice

size, and the number of iterations the CA rules are applied. Similar issues can arise in various

industrial design problems – e.g., if the fitness of a design is evaluated by a lengthy discrete-

event simulation that uses randomly generated scenarios to test a product’s performance.

Interactive GAs [Caldwell & Johnston, 1991] are another notable example where this analysis

could be applicable, as they use humans to evaluate fitness, thus causing fitness evaluation

to be typically both noisy and (very) slow.

Multi-agent systems and multi-agent learning. The field of agent-based modeling is

closely related to, and sometimes overlapping with, the field of “multi-agent systems” (MAS).

Agent-based modeling, which has been the primary concern of this document, attempts to

simulate (or reproduce) the emergence of some natural or artificial phenomenon, through the

interactions of multiple agents. In multi-agent systems, there is often a goal of engineering

a multi-agent system to accomplish some specified task. For instance, the goal could be

having a team of small autonomous fire-fighting robots collaboratively extinguish a burning

building. In this case, the researcher’s challenge may be to discover a set of rules by which

these fire-fighting robot agents should act, such that they will exhibit a reliable strategy for

extinguishing a burning building in a wide variety of real-world settings. Another example

of multi-agent systems research would be the development of software agents that engage

in independent bidding in online auctions/markets. A third example of multi-agent systems
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research is the classic RoboCup competition [Kitano, Asada, Kuniyoshi, Noda, & Osawa,

1997], wherein teams of robots play soccer against one another. Multi-agent systems research

is often coupled with the study of “multi-agent learning” - that is, techniques that agents (or

teams of agents) can use to improve their performance on some goal task over time. For more

information about the area of multi-agent learning, see the excellent survey by Panait and

Luke [2005]. A primary difference between agent-based modeling and multi-agent systems

research stems from the intended objective: is it to create a model for the sake of better

understanding a system, or is it to create a system that performs some useful task? However,

there is not always clear-cut agreement on the precise definition of either ABM or MAS (for

instance, some consider MAS to be a sub-genre of ABM, and vice versa) and it is a blurry line

that divides these two areas of research. The semantic debate aside, much of this thesis work

will be useful for multi-agent system research as well as ABM research. For example, when

designing a team of virtual soccer-playing bots, there will naturally be a number of global

parameters associated with the bots (such as maximum-kicking-speed) and the environment

(such as grass-friction-coefficient). It would be informative to explore the parameter-space

of this multi-agent system, to calibrate the agent properties for optimal performance, or to

discover the changes in environmental properties that the bots are most sensitive to. In

some cases, multi-agent learning problems can be recast as parameter search problems, in

which case, using a genetic algorithm to search for a specified behavior in the parameter

space of a MAS is equivalent to evolving agents (or teams of agents) capable of performing

a desirable task. However, sometimes the agent-level behavior is not best characterized

by a set of global parameters: for instance, the team of agents may require heterogeneous

behaviors, or agent behavior may be best represented as a flexible computer program, rather

than fixed rules with parameters filling in the blanks, in which case a different technique such
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as genetic programming (GP) may be more appropriate. However, the applicability of the

theories, methods, and tools developed in this thesis spill over into multi-agent systems to

some extent, and in some cases they even assume a new interpretation as solving multi-agent

learning problems.

Evolutionary testing and verification in stochastic systems. As mentioned above,

one of the thesis contributions was to develop a methodology and framework for using search-

based techniques to address a variety of agent-based model exploration tasks, including some

aspects of model testing and verification (such as sensitivity analysis leading to the discovery

of a bug in the Artificial Anasazi model in Chapter 6).

There are numerous applications where there is a stochastic computational system (possi-

bly hardware, software, or a network of computational devices) whose behavior is dependent

on a number of parameters. In general, it is a difficult task to verify that the system is

operating correctly, and that various types of anomalous behavior cannot occur. However,

it may be helpful to use search techniques to evolve parameters that lead to various types of

extreme behavior. If the extreme behavior is outside the range of acceptable behavior, there

is evidence of a problem. Additionally, evolutionary search methods can test whether small

perturbations in combinations of parameters can yield significantly different behavior. Thus,

the work presented herein regarding the use of genetic algorithms for testing/verification of

agent-based models may extend to broader software/system testing applications.

11.2. Future Work

As stated above, this dissertation is not intended as the “final word” on this subject,

and it would be incomplete if it did not also identify key challenges that remain, as well
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as provide guidance for future areas of fruitful research. This thesis has laid the necessary

groundwork for several important research directions.

11.2.1. Further benchmarking

The development of a set of benchmark models and exploration tasks (Chapter 9 provides

the necessary substrate for further experimentation regarding which metaheuristic search

methods are most effective for agent-based model exploration. Although this thesis presented

the most comprehensive comparison of search algorithms in this domain to date, much work

remains to be done. Here are the three most promising lines for continuing research in this

vein:

(1) Due to pragmatic constraints, the parameters of the search algorithms themselves

were not varied. While sensible default values were chosen, additional experiments

may reveal important trends in GA parameters such as the mutation-rate, crossover-

rate, or population-size.

(2) There are several other metaheuristic search algorithms that should be tested –

e.g., particle swarm optimization [Kennedy et al., 1995], harmony search[Geem et

al., 2001], or the cross-entropy method [Rubinstein & Kroese, 2004].

(3) Although the models and tasks chosen for benchmarking represent a reasonably

broad spectrum of QBME analysis, it is not comprehensive. Additional models and

tasks may be desirable to include in benchmarking, and some of the current models

and tasks should be reconsidered (for instance, the Segregation task may be too easy

to be useful for evaluating search algorithm performance).
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11.2.2. Multi-objective exploration

In a footnote in Chapter 3, we mentioned that it is not truly necessary to condense all of

the information about a model run down to a single number, in order to search for behavior

in the model. In fact, there is a thriving area of research called multi-objective optimization

which focuses on searching for parameters that maximize (or minimize) multiple quantities

simultaneously, and evolutionary algorithms have been shown to perform well on such tasks

[Deb, Agrawal, Pratap, & Meyarivan, 2000; Zitzler, Laumanns, Thiele, et al., 2001; Deb,

2001]. There is also a body of research attempting to bridge work on multiobjective opti-

mization with agent-based modeling and multi-agent systems [Socha & Kisiel-Dorohinicki,

2002; Rogers et al., 2004; Narzisi et al., 2006]. The extension of the QBME framework to

handle multiple objective functions is reasonably straightforward. Instead of choosing a sin-

gle behavior, practitioners would choose multiple behaviors, and design multiple objective

functions that quantify those behaviors. For each search, the multi-objective search algo-

rithm would return a set of Pareto-optimal parameter settings, rather than just a single

“best” choice for the parameter settings, and users would be able to examine the trade-offs

between the various behaviors, and the extent to which the behaviors could be elicited from

the model simultaneously (using the same parameter settings). This is how it would work

in theory. In practice, BehaviorSearch would need to be extended to include multi-objective

search algorithms (such as SPEA2 [Zitzler et al., 2001] or NSGA-II [Deb et al., 2000]), and

provide additional support for effectively visualizing the resulting Pareto-fronts (which poses

challenges for high-dimensional datasets).
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11.2.3. Additional Case Studies

Each of the case studies (Chapters 4 to 7) provided new insights or perspectives on explo-

ration and analysis tasks in ABM research domains. Thus, additional case studies are also

likely to be helpful and informative. I have been working on an ABM that I developed in

conjunction with colleagues in the Linguistics Department at Northwestern University re-

garding how language can change or evolve in a social network context. Of particular interest

is the conditions under which “language cascades” are (or are not) likely to occur. During

the course of this work, I applied BehaviorSearch to find parameter settings that were partic-

ularly conducive to cascades. As a result, we identified an important region of the parameter

space that we had not yet considered. I have also been in communication with a researcher

who has created an agent-based model of hybrid/alternative-fuel vehicle adoption, and who

is interested in applying QBME methodology to calibrate the model parameters against

real-world data. More extensive exploration of the affordances of search-based exploration

in these or other models could be enlightening.

11.2.4. Fitness landscape characterization

For several of the tasks with smaller search spaces, we examined the complete fitness land-

scape. With the tasks with larger search spaces, exhaustive experiments like this are impos-

sible. However, it still may be possible to partially characterize these fitness landscapes. For

instance, one might be able to estimate the number of local optima present in the space, and

the size of the basins of attraction for each of these optima. The presence of noise confounds

efforts to characterize landscapes in this manner, and the noise must be taken into account.

Thus, this process is by no means trivial. However, it would be useful to develop a scheme
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for fitness landscape profiles, to characterize ABM tasks and possibly group them into sim-

ilar categories. If it were possible to efficiently create these fitness landscape profiles, then

search methods could be tailored to ABM analysis tasks on an individual basis, with the

potential to drastically improve search performance. On a related note, it would be useful

to have a method for ranking the “complexity” of model exploration tasks, since the number

of parameters (search space dimensionality), the resolution for varying parameters, and the

amount of “noise” in the results provide only an incomplete picture of the complexity of

the task. This ranking would help with the development of appropriate benchmarks, and in

judging search algorithms relative performance on tasks of varying complexity.

11.2.5. Recombination and epistasis

One key hallmark of classic genetic algorithms (in contrast to other stochastic search mech-

anisms, such as hill climbing, simulated annealing, or particle swarm optimization) is the

use of a crossover operator, which permits recombination of information during the search’s

progress toward a solution. That such recombination is beneficial is related to the build-

ing block hypothesis [D. E. Goldberg, 1989], which posits that genetic algorithms work by

combining small contiguous pieces of solutions (“building blocks”) to create better solutions.

However, for many problem domains the benefits of crossover are uncertain. An important

area of future research is to consider the extent to which crossover is beneficial in the domain

of ABM exploration, and whether crossover can be improved in this context. In previous

work [Stonedahl, Rand, & Wilensky, 2008a], I proposed a novel crossover mechanism called

CrossNet, which uses a flexible network as the underlying chromosomal structure rather than

the typical linear genome ordering. The level of performance benefit that can be gained from
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this expanded chromosomal representation is unclear at present, but it does provide a mech-

anism for incorporating a priori domain knowledge into the search process, through the

specification of epistatic interaction links between parameters in the chromosomal network.

This touches on a rather general question in AI: in what ways, and to what extent, should

human intuition be combined with black box search algorithms, so as to best take advantage

of the strengths of both? To entirely eschew the use of human knowledge of a domain during

a search process is arguably foolish and inefficient, but alternatively, implanting too much

human bias may prevent the evolution of unexpected and surprisingly good solutions. An

investigation of this idea could: 1) provide a real testbed for the CrossNet mechanism, 2)

contribute to the understanding of the role of crossover in genetic algorithms, and 3) have

broader implications regarding the inclusion of domain-specific knowledge within the general

metaheuristic framework of genetic algorithms.

11.2.6. Algorithmic and cognitive biases

In a footnote in Section 2.1, I asserted that computational search methods such as ge-

netic algorithms have different biases than human researchers when exploring the parameter

space of an agent-based model. The intuition here is that researchers’ expectations will be

strongly flavored by their cognitive representation of the model, and analogies to the target

phenomenon being modeled. For instance, in a model of epidemics, humans would expect

an increase in a parameter named “immunization-fraction” to result in less disease spread,

or in a model of ant foraging, humans would expect an increase in ant-movement-speed to

result in a greater quantity of food being harvested. These intuitions will often be correct,

and thus may lead humans to explore the space of model parameters more intelligently and

efficiently than a computational search algorithm. However, there may be cases where these
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intuitions are false (either because of emergence leading to surprising results, or because the

human misunderstands the parameter’s name and impact on the model rules, or possibly

because there is a bug/error in the model. Since the metaheuristic search algorithm lacks

any representation of model structure, it has no expectations based on parameter names or

analogies to the target phenomenon; it will not be misled by parameter’s names. However,

search algorithms do have their own biases that affect the way that they explore the pa-

rameter space. For instance, most search algorithms make the assumption that if a point

in the parameter space yields good results/behavior, a nearby point in the space is also

likely to be a good choice. However, these arguments that the biases are different are based

merely on my own intuition, rather than experimental evidence. Although I feel confident

that the biases will turn out to be different, I am less sure of exactly how they will be

different, or to what extent. In any case, this would be a very interesting cognitive science

experiment, comparing the way that humans and genetic algorithms go about exploring a

model’s parameter space. Possibly the amount of information given to the human about the

model and target phenomena could also be controlled (i.e., by substituting Greek letters for

the more descriptive model parameter names) to see how this would affect results. Beyond

the merely academic interest, these cognitive experiments might provide insight into how

computer search algorithms could be adapted to mimic human behavior to achieve more

effective results, or how search algorithms might be tailored to specifically complement the

deficiencies and biases present in human exploration behavior.

11.2.7. Unsupervised exploration

I am convinced that unsupervised search and exploration of ABM behavior is one of the

most intriguing areas for future work. One arguable drawback of the QBME framework,
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is that it requires users to formulate specific quantitative measures of behaviors they are

interested in. What if no such specification was necessary, and we could design an intelligent

search algorithm that could derive its own measures for the given model, in order to discover

interesting points or regions of the parameter space? As a specific case, we could imagine a

phase-transition-detection algorithm, which would scour the search space for drastic changes

in output patterns based on small changes in the model’s parameters. A key challenge

here is that models produce a monumental amount of information, and sifting through that

information to create relevant condensed measures of ABM behavior will be challenging.

To simplify the problem, one might ask the user to enter a large number of “variables

of interest” for the model - or possibly the information could be automatically extracted

from the plots and monitors in the ABM’s interface. Even in this simpler case, there are

challenges to finding patterns among a medium number of temporally-varying outputs. One

possibility would be to use a hybrid of genetic algorithms with unsupervised clustering

algorithms (to identify similar behavioral regimes amongst the output data). It may also

be possible to cast this problem within an active learning framework, wherein the machine

learning algorithm must decide (based on past history) what sampling point in the search

space would be most informative for refining the algorithm’s hypothesis about clusters in

the search space. Recently, Bramson [2009; 2010] has been advocating for the use of Markov

models as a formal representation of ABM behavior. Although unproven, this representation

may provide a richer representation than simply using a collection of numeric time-series.

It would be interesting to test this theoretical approach in practice by training a Markov

model (e.g., using the Viterbi algorithm [Viterbi, 1967; Forney Jr, 1973]) with varying model

parameters and then perform clustering on the resulting Markov models to identify regimes

in the parameter space. There are, in fact, a large number of machine learning methods that
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might be employed, including decision/regression trees, neural networks, and support vector

regressions. However, further research and experimentation will be required both to devise

appropriate methods for applying these algorithms and to assess the effectiveness of these

various approaches. The possibilities are tantalizing – an artificial intelligence agent could

independently analyze ABMs and provide human researchers with a set of observations and

points of interest. Collaborative human-AI research is an active area in general, and this

application offers the potential to eventually revolutionize how scientific model analysis is

performed.

11.2.8. Emergence and the art of quantifying the qualitative

Emergence is one of the key ideas in the field of complexity science; myriad systems, com-

posed of simple interacting entities, exhibit emergent properties. Sometimes these emergent

properties are relatively straightforward to measure. For instance, in a complex system of

fireflies synchronizing, a completely synchronized state can be detected by noting when all

of the fireflies both start and stop flashing at the exact same times. A simple measure-

ment of partial synchronization could be counting the maximum number of fireflies that are

flashing at any given instant, but what if there are disparate groups of fireflies synchronized

at the local level, but not all the groups are synchronized at the global level? Perhaps a

more sophisticated measure might analyze the Fourier decomposition of the signal generated

by the history of flashes over time. Furthermore, in many cases emergent behavior can be

visually observed and identified by humans much more easily than it can be quantified, or

identified by computer systems. Consider the NetLogo Flocking model [Wilensky, 1998]:

what is it about the aggregate behavior that brings the model to life, creating the resem-

blance of real birds or schools of fish? It is not the convergence to a steady state (either in
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location or alignment), but rather the dynamic equilibrium of birds flowing in and around

each other in structured, yet partially chaotic, patterns. Attempting to quantify complex

dynamic patterns such as this is a challenging task, and developing robust methods for doing

this would contribute significantly to complex systems research. Chapter 3 presented some

work in this area, using the organizing principles of levels and diversity to generate a rich

array of behavioral measures. Through the development of quantitative measures of specific

emergent properties in several example models and case studies (Chapters 4, 5, 6, 7, 9), this

thesis provides useful material for continuing research in this direction. Future work may be

able to draw on the measures of ABM behavior provided in this thesis to develop a more

universal framework, or find behavioral measures that apply broadly to a variety of models.

Complex systems researchers have not yet converged on a formal/quantitative definition of

the concepts of either emergence or complexity. Nevertheless, the ability of intelligent com-

puter systems to detect or discover emergence promises to be an important (and exciting)

area in coming years.

11.3. Last words

My hope is that the seeds that were sown in this thesis will bear fruit in an abundance

of research using and refining the query-based model exploration framework, and further

probing how genetic algorithms can improve ABM analysis. Thus, although the words have

been taken out of their original context, the quotation of Winston Churchill (that prefaces

this chapter) seems remarkably apropos in this instance. This final thesis chapter is not the

end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.
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Module. Agent 2007: Complex Interaction and Social Emergence Conference.

Jacobson, M., & Wilensky, U. (2006). Complex systems in education: Scientific and edu-

cational importance and implications for the learning sciences. Journal of the Learning

Sciences , 15 (1), 11–34.

Janssen, M. A. (2009). Understanding artificial anasazi. Journal of Artificial Societies and

Social Simulation, 12 (4), 13. Available from http://jasss.soc.surrey.ac.uk/12/4/

13.html

Jaskowski, W., & Kotlowski, W. (2008). On selecting the best individual in noisy envi-

ronments. In GECCO ’08: Proceedings of the 10th annual conference on Genetic and

Evolutionary Computation (pp. 961–968). New York, NY, USA: ACM.

Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary compu-

tation. Soft Computing-A Fusion of Foundations, Methodologies and Applications , 9 (1),

3–12.

Jin, Y., & Branke, J. (2005). Evolutionary optimization in uncertain environments-a survey.

IEEE Transactions on Evolutionary Computation, 9 (3), 303–317.

Jones, T., & Forrest, S. (1995). Fitness distance correlation as a measure of problem

difficulty for genetic algorithms. In Proceedings of the 6th international conference on

genetic algorithms (pp. 184–192).

Kauffman, S. (1993). The origins of order: Self organization and selection in evolution.

Oxford University Press, USA.

Kauffman, S., & Levin, S. (1987). Towards a general theory of adaptive walks on rugged

landscapes. Journal of Theoretical Biology , 128 (1), 11–45.



378
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